
Orna Agmon ladypine@vipe.technion.ac.il

C Without a Spoon

Orna Agmon

October 12, 2004 C Without a Spoon Slide 1

Orna Agmon ladypine@vipe.technion.ac.il

Program of the Course

• About 8 units of course, with intervals of about a week.

• Within each unit, in the proper places, are interlaced Homework

questions and exercises. Those will be discussed at the beginning

of the next unit. Homework programs will be shown at the

beginning of the next class, and discussed.

• References:

– The C programming Language, second edition, Kernighan

and Ritchie, has the final word, and is the place to look for

answers.

– man / info on a Linux system

• NOT everything will be explained in class - you will need to

search for some more information in the book or man pages.

October 12, 2004 C Without a Spoon Slide 2

Orna Agmon ladypine@vipe.technion.ac.il

TOC

• Why C?

• C basics and Concepts

• CPP

• gcc compilation switches

October 12, 2004 C Without a Spoon Slide 3

Orna Agmon ladypine@vipe.technion.ac.il

What is C?

• A procedural language

• Compiled (not interpreted)

• No Garbage Collection - programmer maintains memory.

• CaSe SenSiTIvE != case sensitive

• Used as a basis for C++.

• Developed by Brian Keringham and Dennis Ritchie, when they

needed a language to write UNIX with (was written in B)

• Can be linked with Fortran

• C gives you enough rope to hang yourself with.

October 12, 2004 C Without a Spoon Slide 4

Orna Agmon ladypine@vipe.technion.ac.il

Why C?

• Efficient - translates to machine language, no virtualization.

• Stable - Linux Kernel is based on it.

• Portable

• Has standards, many compilers including free ones.

• Strong checks, in many levels : Quality assurance.

October 12, 2004 C Without a Spoon Slide 5

Orna Agmon ladypine@vipe.technion.ac.il

C standards

• ISO C (ANSI C) since 1989. Widely supported, hence preferred

standard.

• K&R (the first book on C by Kernighan and Ritchie) C. Old

Standard. The book : The C programming language.

• C9X. Not widely supported by compilers.

October 12, 2004 C Without a Spoon Slide 6

Orna Agmon ladypine@vipe.technion.ac.il

Flow of a C Program

• A sentence ends with a semi-colon (;).

• New lines do not matter

• Still, it is more readable to break the lines at about 80

characters, though not compulsory.

• /* Comments must begin and end - Homework: think of a

program that compiles, but produces the wrong executable,

because of an unclosed comment*/

• //If the compiler is a C++ compiler, One liner comments are

also valid.

October 12, 2004 C Without a Spoon Slide 7

Orna Agmon ladypine@vipe.technion.ac.il

Indentation and Syntax Highlighting

• Proper indentation helps reading structured programming.

• They are both done in good programming editors (emacs,

xemacs (using tab), vi and others. Not pico.)

• Going over the program and indenting it helps finding blocks

which were not properly closed.

October 12, 2004 C Without a Spoon Slide 8

Orna Agmon ladypine@vipe.technion.ac.il

Basic Variables

• Variables have some basic types: char, int, short, double, float.

• For logical variables use an integer-like variable.

October 12, 2004 C Without a Spoon Slide 9

Orna Agmon ladypine@vipe.technion.ac.il

Logical Operators

• Over variables:

< > == != || &&

• Binary operations:

| &

• Unary operation: !

• unrelated note: for ab, use pow(a,b), and add the line

#include <math.h> at the top.

October 12, 2004 C Without a Spoon Slide 10

Orna Agmon ladypine@vipe.technion.ac.il

Blocks

• An execution block is a single statement or a group of

statements, enclosed by curly braces: {}. For example, an “if”

statement, with and without blocks:

October 12, 2004 C Without a Spoon Slide 11

Orna Agmon ladypine@vipe.technion.ac.il

Blocks With and Without Curly Braces

• if (a<5)

b=3;

else

b=2;

• if (a<5) {

b=3;

b=3;/*I can add more statements here*/

} else {

b=2;

}

October 12, 2004 C Without a Spoon Slide 12

Orna Agmon ladypine@vipe.technion.ac.il

Where to put the new line?

• Even though C permits writing all the code in one line, it is good

to go to a new line after an “if” or “else”, for debugging purposes.

October 12, 2004 C Without a Spoon Slide 13

Orna Agmon ladypine@vipe.technion.ac.il

Ternary If

• The same code can be written as:

b=(a<5)?3:5;

• Useful for initializations and clarity of code.

• Homework: write an expression that gives the minimal of the

values a,b, using ternary if and regular if.

October 12, 2004 C Without a Spoon Slide 14

Orna Agmon ladypine@vipe.technion.ac.il

Short-circuit Evaluation

• if ((a>0.0) && (sqrt(a)<5.0))

b=3;

• sqrt is not allowed non-positive input, but it will never be

evaluated.

October 12, 2004 C Without a Spoon Slide 15

Orna Agmon ladypine@vipe.technion.ac.il

Do/While Loops

• int i=0;

while (i<10) {

++i;

}

• int i=0;

do {

++i;

} while (i<10);

• What is the difference?

October 12, 2004 C Without a Spoon Slide 16

Orna Agmon ladypine@vipe.technion.ac.il

The for loop

• int i,N=10;

for (i=0;i<N;++i){

/*execution block*/

}

• 3 clauses in the parenthesis: initialization, a condition for keeping

on the loop, and something to do when going to the next cycle.

• Within the block, comes the actual code to be executed.

• The loop variable must be declared before the loop, otherwise the

behavior is not well defined (C++ extension).

October 12, 2004 C Without a Spoon Slide 17

Orna Agmon ladypine@vipe.technion.ac.il

Break and Continue

• int i,j=0;for (i=0;i<10;++i){ if (i<5) continue; ++j;}

• int i,j=0;for (i=0;i<10;++i){ if (i<5) break; ++j;}

• What is the value of j?

• What is the value of i?

• What is wrong with this question?

• Note the obfuscated c in the examples. Bad formatting!

October 12, 2004 C Without a Spoon Slide 18

Orna Agmon ladypine@vipe.technion.ac.il

Switch

switch (i){

case 1:

a=3;

break;

case 2:

a=3;

break;

case 213124:

a=-1;

break;

default:

a=-1000;

}

• The break prevents continuing to the next code line.

October 12, 2004 C Without a Spoon Slide 19

Orna Agmon ladypine@vipe.technion.ac.il

Falling Through a Switch

• switch (i){

case 1:

/*fall through!!*/

case 2:

a=3;

break;

case 213124:

a=-1;

break;

default:

a=-1000;

}

• When collating options, add the comment /*fall through*/, to

indicate intention.

October 12, 2004 C Without a Spoon Slide 20

Orna Agmon ladypine@vipe.technion.ac.il

When to use a switch?

• Used when there are many different options - a switch is more

readable.

• Used when there is a key, and there are only certain legitimate

options. Using enum (an integer with specific values only, see

later), the code will not compile if the switch does not deal with

all possible values.

October 12, 2004 C Without a Spoon Slide 21

Orna Agmon ladypine@vipe.technion.ac.il

go to label

• if (bad_example!=0)

goto L1;

bad_example=1;

L1: bad_example=0;

• Usually, it is wrong to use goto...

• Except, when catching errors, and cleaning up (see later in

dynamic memory)

October 12, 2004 C Without a Spoon Slide 22

Orna Agmon ladypine@vipe.technion.ac.il

printf - Simple Output

• The function printf prints to STDOUT.

• It take an arbitrary number of parameters.

• It gets a format and the values to print. Special characters must

be escaped. Homework: man 3 printf.

• printf(‘‘one is %d, a third is %g’’,1,1.0/3.0);

• Homework: What is the difference between 1/3 and 1.0/3.0?

How much is 1/3.0?

October 12, 2004 C Without a Spoon Slide 23

Orna Agmon ladypine@vipe.technion.ac.il

Hello World

• #include <stdio.h>

int main(void){

printf("Hello World\n");

return 0;

}

• Copy the program to file hello world.c (can be copied from

/orna/lectures/c/examples)

• Compile with gcc hello_world.c. Run with a.out.

• Homework: Use the simple Hello World Program and the

constructs discussed so far, to compute the square of the

numbers 1 - 100. for the square of 20, 30, 40 print 0. Implement

once using if, and once using switch. Bonus: print square roots.

(man sqrt for the include, compile with -lm for math library).

October 12, 2004 C Without a Spoon Slide 24

Orna Agmon ladypine@vipe.technion.ac.il

CPP - The C Pre Processor

Orna Agmon

October 12, 2004 C Without a Spoon Slide 25

Orna Agmon ladypine@vipe.technion.ac.il

The Pre Processor

A utility (/usr/bin/cpp) which goes over the C source files,

combining code snippets into coherent files. Its purpose is:

• Make sure that code pieces are written exactly the same way all

over the program.

• Macros

• Have code in the source file without seeing it.

• Exclude source from the file, pending on switches.

• Prevent bad compilation and linkage

• Portability

• Create several executables from the same source

October 12, 2004 C Without a Spoon Slide 26

Orna Agmon ladypine@vipe.technion.ac.il

What does cpp actually do?

• To see what the preprocessor does: gcc -E hello_world.c, or

cpp hello_world.c.

• Try with -P for readability.

• Homework: when is it better to use gcc -E?

October 12, 2004 C Without a Spoon Slide 27

Orna Agmon ladypine@vipe.technion.ac.il

The Basic cpp instructions

#include <stdio.h>

#include ‘‘action.h’’

#define PROGRAM_VERSION 10

#undef PROGRAM_VERSION

#ifdef PROGRAM_VERSION

#ifndef PROGRAM_VERSION

#if !defined(PROGRAM_VERSION)

#endif

October 12, 2004 C Without a Spoon Slide 28

Orna Agmon ladypine@vipe.technion.ac.il

The Include Path

• When given a file in an #include command, cpp searches for it at

a given path - the include path.

• The include path includes system directories, such as

/usr/include and its subdirectories.

• System and compiler include paths differ on different systems.

(Use autoconf to set them)

• When using quotation marks, the include path begins with the

current directory.

• Additional directories can be added using the -I switch.

• Pre Processor switches can be given to the compiler - it passes

them to the Pre Processor.

gcc -I/home/orna/include/ hello_world.c

October 12, 2004 C Without a Spoon Slide 29

Orna Agmon ladypine@vipe.technion.ac.il

Choosing The Include Path

• HomeWork: How do you choose between include with “” and

with <>?

• What can happen if you get it wrong?

October 12, 2004 C Without a Spoon Slide 30

Orna Agmon ladypine@vipe.technion.ac.il

Protecting Headers

• A header is a file, which contains the prototypes of functions.

Typically, the file’s name ends with .c, and the compatible

header’s name is the same, only with a .h suffix.

• A proper header must contain all the information required to

define those prototypes.

• To avoid multiple definitions, use the following form (in this

example, for a header called myheader.h)

#ifndef MYHEADER_H

#define MYHEADER_H

/* Here comes the header for function myheader itself*/

void myheader(void);

#endif

October 12, 2004 C Without a Spoon Slide 31

Orna Agmon ladypine@vipe.technion.ac.il

Protecting Headers Safety

Homework: What happens if you sometimes write in the format

#ifndef MYHEADER H, and some other times, in the format

MYHEADER DEFINED?

October 12, 2004 C Without a Spoon Slide 32

Orna Agmon ladypine@vipe.technion.ac.il

Definitions

The scope of the definition is the syntactic scope from this point on,

in the same file.

• Example:

#define PAI PI_M

#define PAI 3.14

#define EPSILON 1.e-10

#define SIZE_OF_ARRAY 100

#define malloc mymalloc

#define MY_NEW_MACRO_APPROVED

#define DEBUG_MODE

• to make sure the same constants are used throughout the

program

• to enable quick changes of sizes.

October 12, 2004 C Without a Spoon Slide 33

Orna Agmon ladypine@vipe.technion.ac.il

• to set a size of an array, which needed at compile time.

• to trick the compiler, by replacing a library function with

another, local, function. Note that in such a case, the definition

must not appear before the definition of the function.

October 12, 2004 C Without a Spoon Slide 34

Orna Agmon ladypine@vipe.technion.ac.il

Homework - Replacing a Function

• Use #define to make the program (written in previous

Homework), which prints square roots, print squares instead.

• Use the following function

(/orna/lectures/c/examples/square function.c):

double square(const double a){

return a*a;

}

October 12, 2004 C Without a Spoon Slide 35

Orna Agmon ladypine@vipe.technion.ac.il

Macros

• A bad example for a macro definition:

#define MIN(A,B) A<B?A:B

• A good example:

#define MIN(A,B) (((A)<(B))?(A):(B))

• Using a macro:

i=MIN(3,5);

• Macros may also be protected, to avoid re-definition:

#ifndef MIN

#define MIN(A,B) (((A)<(B))?(A):(B))

#endif

• Homework: Bring an example where using the MIN macro is

dangerous, and has unwanted side-effects.

October 12, 2004 C Without a Spoon Slide 36

Orna Agmon ladypine@vipe.technion.ac.il

MACROS are problematic

• Complicated macros can be created using continuation lines:

#define MIN(A,B) \

(((A)<(B))?(A):(B))

• But: You cannot debug inside a macro!

• It is hard to tell when compiler errors come from within a macro.

• Indentation of a macro is not automatically done by IDEs.

October 12, 2004 C Without a Spoon Slide 37

Orna Agmon ladypine@vipe.technion.ac.il

Stringification

• an argument preceded by a # is expressed literally.

#define WARN_IF(EXP) \

do { if (EXP) \

fprintf (stderr, "Warning: " #EXP "\n"); } \

while (0)

• The do-while are there to make it possible to write

WARN IF(ARG);

• Homework: info CPP (more updated than the man page). This

example and the next are from info cpp.

October 12, 2004 C Without a Spoon Slide 38

Orna Agmon ladypine@vipe.technion.ac.il

Concatenation

struct command

{

char *name;

void (*function) ();

};

struct command commands[] =

{

{ "quit", quit_command},

{ "help", help_command},

...

};

Instead:

October 12, 2004 C Without a Spoon Slide 39

Orna Agmon ladypine@vipe.technion.ac.il

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =

{

COMMAND (quit),

COMMAND (help),

...

};

October 12, 2004 C Without a Spoon Slide 40

Orna Agmon ladypine@vipe.technion.ac.il

The Compiler

Orna Agmon

October 12, 2004 C Without a Spoon Slide 41

Orna Agmon ladypine@vipe.technion.ac.il

Compilers

• C compilers are available on most UN*X machines.

• The free C compiler is gcc.

• gcc is widely available over various platforms.

• The compiler we use defines the meaning of the C we write,

because compilers differ in the implementation.

• Some compilers do not comply with some standards, some

enlarge the language with specific features.

• Strict C rules ensure that the program will compile on many

compilers.

October 12, 2004 C Without a Spoon Slide 42

Orna Agmon ladypine@vipe.technion.ac.il

gcc Compilation Switches

Switches follow the compiler’s name with a “-” in the command line.

For example:

• Language Options: -ansi

• Warning Options: -Wstrict-prototypes -Wmissing-prototypes

-Wpointer-arith -Wcast-align -Wimplicit -Wmain -Wswitch

-Wformat-Wchar-subscripts -Wreturn-type -Wcast-qual

-Wcast-align

• -pedantic - do not use gcc extensions

• -Wshadow

• -Wunused

• -Werror

October 12, 2004 C Without a Spoon Slide 43

Orna Agmon ladypine@vipe.technion.ac.il

More gcc Compilation Switches

• Question: what does -Wall do? Compare (0 == a) to (a == 0)

to ((a = 0)). compare asign.c

• definitions: -Dmacro=def, -Dmacro : define a macro all over the

program.

• Profiling: -pg

• Debugging: -g

• output: -o targetname

• linkage: -c

• Optimization: -O, -O0, -O1, -O2, -O3, -finline-functions,

-ffloat-store

October 12, 2004 C Without a Spoon Slide 44

Orna Agmon ladypine@vipe.technion.ac.il

Homework - gcc switches

• Read the section in gcc man page about Warning options, and

specifically check what the above mentioned options do.

• Write a program which prints your name, only if macro

YOUR INFO is defined. Compile it twice from the same source,

and run.

• Change the program such that is prints A,B,C, if YOUR INFO

equals 1,2,3 respectively, compile and run in various methods.

• Between the last two exercises, which was intended to use #ifdef?

October 12, 2004 C Without a Spoon Slide 45

Orna Agmon ladypine@vipe.technion.ac.il

gcc Extensions

Many gcc extensions are nowadays acceptable in many other

compilers. Read all about gcc extensions under info gcc, C

extensions.

• inline functions

• c++ comments

October 12, 2004 C Without a Spoon Slide 46

Orna Agmon ladypine@vipe.technion.ac.il

Profiling with gprof

• Compile with optimization data using -pg. Use file

the third rule.c.

• Run the executable (a.out). A file called gmon.out will be

created.

• Run gprof a.out to get a report on the performance.

October 12, 2004 C Without a Spoon Slide 47

Orna Agmon ladypine@vipe.technion.ac.il

Variables

Orna Agmon

October 12, 2004 C Without a Spoon Slide 48

Orna Agmon ladypine@vipe.technion.ac.il

Variable Declarations

• Variables are always declared at the beginning of a block (in

C++, they can be declared anywhere within the code)

• Variables inside functions have a lexical scope they are valid in.

• Global variables (use only when must!) have a syntactic scope

they are valid in.

• Best to declare variables as close (syntactically) to where they

are used.

• Best to initialize variable when declaring them. An initialization

can be done with constant values only. gcc extention: runtime

values as well.

• Best to declare variables in the smallest lexical scope.

• Variables may shadow each other - avoid this (-Wshadow)

October 12, 2004 C Without a Spoon Slide 49

Orna Agmon ladypine@vipe.technion.ac.il

• Unused variables and parametersmay indicate a bug (-Wunused:

parameter,variable,value)

October 12, 2004 C Without a Spoon Slide 50

Orna Agmon ladypine@vipe.technion.ac.il

Built in Types

• Built-in variables: float, double, char, int, long, long long (not

always supported).

• C types specify minimal sizes only: int is at least 16 bit, long is

at least 32 bit.

• Short is least 8 bit, but will still be so on 64bit architecture (too

many things rely on this).

• gcc extention - an integer with defined number of bits:

unsigned int foo:1 for logical.

October 12, 2004 C Without a Spoon Slide 51

Orna Agmon ladypine@vipe.technion.ac.il

enum - a self generated type

• enum is a way to give integer values a literal meaning

• enum key_function_e{

KEY_FUNCTION_NONE=0,

KEY_FUNCTION_CONST=1,

KEY_FUNCTION_CONSTANT=1,

KEY_FUNCTION_LINEAR,

KEY_FUNCTION_CUBIC,

KEY_FUNCTION_TRIANGULAR

}key_function;

• Enum values are set from 0 on, unless forced.

• Enum values are global - best to use a common initial to all

enum values of the same variable.

October 12, 2004 C Without a Spoon Slide 52

Orna Agmon ladypine@vipe.technion.ac.il

Enum - cont.

• Enum values may be added in time - best not to rely upon their

numeral value. If must, make a comment on the definition, and

explicitly set the values.

• An enum value can be printed as an integer. To print it as a

string you must write a function per each enum.

• z e2s.pl will create for you a file with functions which work both

ways: converting enums to strings and strings to enums.

October 12, 2004 C Without a Spoon Slide 53

Orna Agmon ladypine@vipe.technion.ac.il

typedef

• typedef enum key_function_e{

KEY_FUNCTION_NONE=0,

KEY_FUNCTION_CONST=1,

KEY_FUNCTION_CONSTANT=1,

KEY_FUNCTION_LINEAR,

KEY_FUNCTION_CUBIC,

KEY_FUNCTION_TRIANGULAR

}key_function_t;

key_function_t key_function1, key_function2;

October 12, 2004 C Without a Spoon Slide 54

Orna Agmon ladypine@vipe.technion.ac.il

typedef - cont.

• It is useful to define a new type when:

– The type definition is complicated

– A variable typed thus is passed into a function, and you want

to change its const attribution.

– Generalization and architecture independence: Usage of

special types will insure consistency with system libraries:

size t for sizes, time t for the return value of the time

function.

October 12, 2004 C Without a Spoon Slide 55

Orna Agmon ladypine@vipe.technion.ac.il

Arrays

• An array of integers:int a[100];

• Access to an array is done using square brackets: a[0] is the first

element.

• A multidimensional double array: double b[10][34][20];

• A multidimensional array is arranged in the memory such that

b[i][j+1] follows exactly after b[i][j] (opposed to Fortran arrays).

October 12, 2004 C Without a Spoon Slide 56

Orna Agmon ladypine@vipe.technion.ac.il

Strings

• A string is an array of char variables: char mystr[80];

• A C string is NULL terminated: after the last significant

character comes the character ’\0’, whose value is really

0000000 in binary.

• C functions which work on strings are found in string.h.

• Homework: man snprintf, compare to sprintf. man strncat,

strncmp, strncpy, strlen. When is strcpy usefull?

• Note the confusing return value of strncmp.

October 12, 2004 C Without a Spoon Slide 57

Orna Agmon ladypine@vipe.technion.ac.il

Pointers

• Each named variable is a nickname for an address in the memory.

• &a is the address of the variable a. The size of the number

depends on the architecture - on a 64bit arch it will be a 64bit

number.

• int *b=&a :a variable defined as a pointer to a type can hold its

address.

• Refer to the value in the address held in a pointer using *: *b will

give the value stored in variable a, even if a is set to a new value.

• Pointers have an alignment: a pointer for a small data type may

be an invalid pointer for a larger data type.

October 12, 2004 C Without a Spoon Slide 58

Orna Agmon ladypine@vipe.technion.ac.il

Casting

• Casting is converting variables between types.

• An implicit casting is done for example when using sqrt(i), where

i is int. Also when computing a mixed formula with integers and

doubles, or when setting its output into an integer.

• int i=1.0/3.0;

• double i=1/3.0;

• Usually casting is dangerous.

• Because of pointer alignment, pointer casting is extremely

dangerous, and may be unportable. For example, the space of

one 8-byte float will accommodate 4 2-byte int values on some

system, and 2 4-byte int values on others.

• Check using the program casting.c.

October 12, 2004 C Without a Spoon Slide 59

Orna Agmon ladypine@vipe.technion.ac.il

struct

• A struct holds together a collection of variables.

• struct linear_function_s{

double a,/* slope of line */

double b;/* constant of line */

}linear_function;

• The order of the variables within the struct in the memory is

according to their order in the definition.

• However, there may be gaps (padding) between the variables -

according to implementation.

• Padding may be controlled by a compiler option.

• A struct does not have to be named, but it helps debugging and

makes compilation checks possible.

October 12, 2004 C Without a Spoon Slide 60

Orna Agmon ladypine@vipe.technion.ac.il

Copying a struct

• For most variables, copying is done using a=b.

• Structs may have gaps inside them. So using = may work, but is

not standard.

• If you intend to copy a struct, initialize its memory before you fill

values in it:

memset(linear_function,0,

sizeof(struct linear_function_s));

Then copy all the memory using memset or bzero:

memcpy(linear_function1,linear_function2,

sizeof(struct linear_function_s));

• Homework: man memcpy, memcmp,memset, bzero.

October 12, 2004 C Without a Spoon Slide 61

Orna Agmon ladypine@vipe.technion.ac.il

Parts of structs and pointers

• struct linear_function_s linear_function, *ptr;

double c;

c=linear_function.a;

ptr=&linear_function;

c=ptr->a;

• An element of a struct is referred to using a period (“.”)

• An element of a struct to which you have a pointer is referred to

using an arrow (“->”);

• The names of the parts of the struct are defined by its definition.

• A struct can be named a name you like.

October 12, 2004 C Without a Spoon Slide 62

Orna Agmon ladypine@vipe.technion.ac.il

A linked list

A linked list is a data structure intended for dynamic growth, as well

as a dynamic change of order of the elements. Though there can be

many implementations, most of them use a struct:

typedef struct list_element_s{

double payload;

struct list_element_s *next;/*a must*/

struct list_element_s *prev;/* may be needed*/

} list_element_t;

Homework: Why did I not use the typedef here, but wrote three

times the long name of the struct?

October 12, 2004 C Without a Spoon Slide 63

Orna Agmon ladypine@vipe.technion.ac.il

Functions

Orna Agmon

October 12, 2004 C Without a Spoon Slide 64

Orna Agmon ladypine@vipe.technion.ac.il

Defining Functions

• There are no procedures - only functions.

• A function can have side effects, apart from the return value.

(procedural programming)

• A function is defined by its input (arguments) and by its output

(return value):

int square(int a, int to_print){

int b=a*a;

if (to_print)

printf(‘‘%d\n’’,b);

return b;

}

October 12, 2004 C Without a Spoon Slide 65

Orna Agmon ladypine@vipe.technion.ac.il

Return Value

• A function can have side effects.

• A function can return a void, which means it does not return a

value.

• The return value of a subroutine can be used as a flag for failure.

“Success has many parents, but failure is an orphan”. Still,

success has little info to pass, and failure can be caused due to

many reasons. Hence, 0 is used for success, non-0 for failure. In

cpp implemented using throw/catch.

October 12, 2004 C Without a Spoon Slide 66

Orna Agmon ladypine@vipe.technion.ac.il

Static Functions

• To define a function only in syntactic scope of the same file, use

static:

static int square{int a, int to_print};

static functions cannot be profiled - use a macro instead.

October 12, 2004 C Without a Spoon Slide 67

Orna Agmon ladypine@vipe.technion.ac.il

System calls and Library functions MAY FAIL

• System calls are system functions - to communicate with the

operating system

• Homework : write a program which removes a file in two ways:

1.using the unlink system-call, 2. using system. Man system,

unlink.

• Library functions are functions supplied by the c language or

other packages. For example, the math library supplies sin, cos.

• The return value of system calls must always be checked, for the

program to be robust.

• Find about the return values at the end of the man/info page.

• Homework: read man page and find return values for

examplatory functions for example: fopen, fclose.

October 12, 2004 C Without a Spoon Slide 68

Orna Agmon ladypine@vipe.technion.ac.il

errno

• System calls and some library functions set a variable called

errno when they have a problem, to state the type of problem.

• Usually, when a system call fails, it sets errno to negative value.

• A succesful library call is allowed to change the value of errno.

(After a successful call, errno is undefined).

• If -1 is a legitimate value of the syscall, it may be necessary to

initialize errno with 0, to know if it failed.

• strerror translates the error code to a string. perror prints it.

• Homework : man errno, strerror, perror.

October 12, 2004 C Without a Spoon Slide 69

Orna Agmon ladypine@vipe.technion.ac.il

Prototypes

• A prototype resembles the definition of the function, only with a

semi-colon at the end:

int square(int a);

int square(int a){

return a*a;

}

• The prototype is usually placed at the header file.

• If the file which includes the function includes the header as well,

the compiler can verify they match.

• Then any other code which uses the function can rely on the

header for accurate usage.

October 12, 2004 C Without a Spoon Slide 70

Orna Agmon ladypine@vipe.technion.ac.il

Homework - Multiple files in a project

• Write a program with two files. In each file is a function. The

main function calls a function in the other file.

• Compile using a standard portable makefile, using the following

prodedure:

– Have configure.in, makefile.in in the directory (you can copy

from an existing program).

– autoconf

– bring needed scripts for configure (it will complain specifically

if you do not)

– configure

– make

October 12, 2004 C Without a Spoon Slide 71

Orna Agmon ladypine@vipe.technion.ac.il

Const, Addresses and Values

Using const on a parameter or a part of it means that the code will

not compile if the function tries to change the constant part.

• Pass by value:

int square{int input};

int square{const int input};

• Pass a pointer to value:

int square{int *input};

int square{int * const input};

• A variable may be declared const within a function, and be used

instead of a #define-ed value. (It has a lexical scope just like a

regular variable).

October 12, 2004 C Without a Spoon Slide 72

Orna Agmon ladypine@vipe.technion.ac.il

Passing a pointer

• Inside the function, *input is the value itself.

• input is the address of the value.

• *input=5; will actually set the variable outside the function.

• input=NULL; will set the address inside the function, but will not

affect what happens outside.

• When using const and trying to change the value inside the

function it will not compile. When not using const, it may cause

a bug.

• In order to pass the adress of variable b to a function, pass &b.

October 12, 2004 C Without a Spoon Slide 73

Orna Agmon ladypine@vipe.technion.ac.il

Const - Homework

• Write a program in which you attempt to change a variable

which is passed by value.

• Print its value at the end of the function.

• Print its value outside the function.

• Write a program in which you pass a const value and try to

change it in the function, and compile it. What happens?

October 12, 2004 C Without a Spoon Slide 74

Orna Agmon ladypine@vipe.technion.ac.il

Dynamic Memory

Orna Agmon

October 12, 2004 C Without a Spoon Slide 75

Orna Agmon ladypine@vipe.technion.ac.il

Memory Areas

• Stack - ordered according to order of access into functions. If the

language allows for recursive functions (like C), each function

entrance is on another place on the stack. C stack is rather small

compared to fortran, and platform dependent - place your big

arrays some place else! (If you do not, you may overrun your

stack pointer). Size of arrays must be known at compile time.

• DATA - Global variables

• Heap - Random access, according to available memory at the

moment of request. Size of arrays may be only known at some

point on run time. Place your large arrays here!

October 12, 2004 C Without a Spoon Slide 76

Orna Agmon ladypine@vipe.technion.ac.il

Dynamic Allocation

• malloc requests memory from the heap. free returns it.

• Homework: man free, alloc, realloc.

• Naive allocate and free:

int *a=(int *)malloc(4*sizeof(int));

a[3]=3;

free(a);

• Why Free at all? (compare and contrast to garbage collection)

• Allocation does not always succeed. Nor does Free. When can

they fail? Why?

October 12, 2004 C Without a Spoon Slide 77

Orna Agmon ladypine@vipe.technion.ac.il

Clever Allocation

Code according to Nadav Har’El.

void * my_alloc(const size_t size){

void *mem;

if(size<=0){

printf ("Invalid attempt to allocate zero bytes");

abort();

}

if(!(mem=malloc(size))){

printf ("Allocation failed");

abort();

}

return mem;

}

October 12, 2004 C Without a Spoon Slide 78

Orna Agmon ladypine@vipe.technion.ac.il

Clever Free

Code according to Nadav Har’El.

void my_free(void ** const pointer){

if(*pointer==NULL){

printf("Invalid attempt to free a NULL pointer");

abort();

}

free(*pointer);

*pointer=NULL;

}

October 12, 2004 C Without a Spoon Slide 79

Orna Agmon ladypine@vipe.technion.ac.il

Usage of clever dynamic memory management

• Use a macro to replace all your memory allocation calls:

#define ckvalloc(ptr,type,nelem) \

((ptr)=(type*)ckalloc((nelem)*sizeof(*(ptr))))

• Homework: write a program which allocates and frees memory

using the previous code.

October 12, 2004 C Without a Spoon Slide 80

Orna Agmon ladypine@vipe.technion.ac.il

Memory Violations

• Memory smear - reading from an unintended and unrelated

location, or worse - writing there.

• Memory Leak

• Read access to uninitialized memory

• Should I free the program’s memory upon exit?

• Automatic tools help avoid those problems:

– valgrind on Linux on i386

– third on OSF1 on alpha

– zmalloc on all platforms - compiled with the code

October 12, 2004 C Without a Spoon Slide 81

Orna Agmon ladypine@vipe.technion.ac.il

Private Memory Management via pointer

arithmetics

• const int n=10;

int *x=(int *)my_malloc(2*n*sizeof(int));

int *y=*x+n;

• What is good about it, what is bad? (relate to memory

fragmentations, memory violation, efficiency)

• How should this memory be freed?

• What is y[0] if x was freed?

• What happens if we free y?

October 12, 2004 C Without a Spoon Slide 82

Orna Agmon ladypine@vipe.technion.ac.il

Memory fragmentation and the Intervals tree

• The info about the heap is saved (in Linux) in the format of an

interval tree: a binary tree, where leaves on a node are kept as

long as there is a difference in their status.

• The intervals tree may be able to give small bits of memory, but

not a large piece, if the memory is fragmented.

• The intervals tree may be better at uniting free memory than

your program.

• Manage the memory only when you have a good reason to

believe you know better.

October 12, 2004 C Without a Spoon Slide 83

Orna Agmon ladypine@vipe.technion.ac.il

Good Programming and Advanced Programming

Orna Agmon

October 12, 2004 C Without a Spoon Slide 84

Orna Agmon ladypine@vipe.technion.ac.il

Efficiency

• Profiling will clear the big messes, but not the small ones.

• Mis-concept: computation is slower than memory access

• Current fact: memory access is the bottle-neck of high

performance computing.

• Hence, do not try storing small parts of calculations only because

you use them twice.

• However, do store them in meaningfully named variables, if it

helps readability.

• The compiler can optimize such things.

October 12, 2004 C Without a Spoon Slide 85

Orna Agmon ladypine@vipe.technion.ac.il

Cache misses

• The cache is a fast small memory, located close to the CPU or in

it.

• Memory access is “cheap” when the data is already in the cache.

• When a line is brought to the cache, more data than the variable

you asked for is brought to the cache. (near data)

• When designing a program, it is worth considering how to have

minimal cache misses: work for a long time on the same piece of

data, instead of going over arrays, and throwing everything from

the cache right after.

• valgrind can profile cache misses.

October 12, 2004 C Without a Spoon Slide 86

Orna Agmon ladypine@vipe.technion.ac.il

Documentation - What Goes Where?

• Document exactly once: double documentation calls for

contradictions.

• The documentation of the general behavior of the function comes

in the header file, near its prototype. Describe its input and

output and its general usage. Intended for users of the function.

• Before the implementation of the function, describe its general

algorithm. Intended for people who read the code (possibly

briefly).

• When documenting the code itself, avoid obvious statements

(increasing i by 1).

October 12, 2004 C Without a Spoon Slide 87

Orna Agmon ladypine@vipe.technion.ac.il

Documentation - How?

• 1:1 is considered a fair documentation: code ratio

• Do not fear to leave empty lines for readability.

• Doxygen generates an html help from comments in the code.

This prevent the need to document twice.

October 12, 2004 C Without a Spoon Slide 88

Orna Agmon ladypine@vipe.technion.ac.il

Debugging

• Print to a file, to the screen (STDOUT) or to the standard error

(STDERR) - printf, fprintf

• WARN IF macro

• abort() - to dump a core, and later debug using a picture of the

memory as it was the the violation was commited (use gdb -c

core to see it)

• IEEE functions: isnan, isinf, isalpha etc. They consider locale.

• Every command begins on a new line, to enable breakpoints.

• Code which is excluded using macros should be compiled on its

own, is possible, to be able to check every combination of macro

switches.

October 12, 2004 C Without a Spoon Slide 89

Orna Agmon ladypine@vipe.technion.ac.il

Debuggers

• -g for debug symbols

• valgrind –gdb attach=yes to attach to the process when a

emmory violation was commited.

• Debuggers:

– gdb (and graphic ends: ddd, xgdb)

– ladebug (and a graphic end: xladebug)

– dbx

October 12, 2004 C Without a Spoon Slide 90

Orna Agmon ladypine@vipe.technion.ac.il

Linking Fortran and C - matching variables

• Fortran actually accepts pointers to variables - this is how in

Fortran, variables can be changed inside the function.

• When Fortran needs to get integer ∗ 4, or an array of it, C can

pass int *, on architectures where int is 32 bit.

• When Fortran needs to get integer ∗ 2, or an array of it, C can

pass short *, on architectures where short is 16 bit.

• When Fortran gets real ∗ 8, or an array of it, C passes double *.

• When Fortran gets real ∗ 4, or an array of it, C passes float *.

• When Fortran needs to get integer ∗ 4, C needs to pass int *.

• Multidimensional arrays are held transposed. If Fortran needs

A(3,4), C needs to passes A[4][3] (multidimensional array - not

pointer to pointer!).

October 12, 2004 C Without a Spoon Slide 91

Orna Agmon ladypine@vipe.technion.ac.il

Linkage

• After compilation, every function/subroutine gets a symbol.

• The symbol is not related to the name of the file in which the

subroutine was written.

• The name is related in various ways to the subroutine’s name.

• When linking several languages, name-mangling may affect the

programming: The calling language may have to use a different

name for the called function than the name which was defined in

the code. When using only one language, it has no effect.

October 12, 2004 C Without a Spoon Slide 92

Orna Agmon ladypine@vipe.technion.ac.il

Name Mangling

• The other language’s symbols usually have an underscore at their

end. For example, subroutine mysub in Fortran may be referred

to as mysub .

• Depending on the Fortran compiler, there may be a different

treatment for subroutine names wich include underscore inside

them: they may get two underscores at their end. For example,

subroutine my sub in Fortran may be referred to as my sub .

• Since Fortran is not case sensitive, it cannot tell the difference

between c functions which differ by caps. For example, if you

have two c functions, void myfunc(void) and

void MYFUNC(void), and in the Fortran code MyFunc was

called, which of the functions should be used?

October 12, 2004 C Without a Spoon Slide 93

Orna Agmon ladypine@vipe.technion.ac.il

Name Mangling - Answer

• The linker is activated by the compiler which compiled all the

objects to one executable. If the compiler is Fortran, it will

refuse to link two functions by the same name.

• Homework: what if the compiler which calles the linker is C? (To

check this, create a main c function, which calls a fortran

subroutine, which calls MyFunc . Also compile two c functions,

myfunc and MYFUNC.)

October 12, 2004 C Without a Spoon Slide 94

Orna Agmon ladypine@vipe.technion.ac.il

Linking Fortran and C: Conclusions

When a function is about to be called from another language:

• It must not include underscores.

• It had better be all lowercase and have no confusables.

• If it is Fortran, it cannot be get or return a logical (which C does

not support).

• If it is Fortran77 it cannot get/return a pointer to pointer (which

fortran 77 does not support).

• Still, there may be platforms where this is not enough and the

code must change in order to link in this particular environment.

Define the functions names as pre-processor constants at one

place, to be able to replace them. For example:

#define FORTRAN_MY_FUNC myfunc_

October 12, 2004 C Without a Spoon Slide 95

Orna Agmon ladypine@vipe.technion.ac.il

Design

• Define constants using names, at one point

• Prepare to add more variables to the module -it easy ans safe.

(for example: prefer allocating an array of structs over allocating

arrays within a struct)

• Prefare interfaces that do not change when you add more

variables to the module: for example, use a struct which holds

the data to the function.

• string sizes should be fixed in one place

• Verify interfaces at compile time, or else at link time or compile

time.

• Collect a (new) module’s functions in one place. Within the

existing code, add only calls to the new functions.

October 12, 2004 C Without a Spoon Slide 96

Orna Agmon ladypine@vipe.technion.ac.il

Input

• Separate code and data: Input should be read from files or from

the command line - do not insert it in the code itself.

• When reading an input file, it should be self documented: for

example, read first the number of lines, and then you know how

many lines to read. Do not expect to get this data elsewhere.

Better to have a mnemonic description of the data inside the

data file.

• Save ASCII files, not binaries.

October 12, 2004 C Without a Spoon Slide 97

Orna Agmon ladypine@vipe.technion.ac.il

Command Line Input - Declaration

#include <getopt.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

char c;

int int_after_t;

October 12, 2004 C Without a Spoon Slide 98

Orna Agmon ladypine@vipe.technion.ac.il

Command Line Input - Parsing

while((c = getopt(argc, argv, "nt:")) != -1){

switch(c){

case ’n’:

printf(‘‘n was read\n’’);

break;

case ’t’:

int_after_t=atoi(optarg);

break;

default:

printf("Usage:\%s [-n] [-t an_int]’’,argv[0]);

return -1;

}

}

October 12, 2004 C Without a Spoon Slide 99

Orna Agmon ladypine@vipe.technion.ac.il

Functions with a varying number of arguments

• Useful for functions which print, like printf.

• The function declaration contains ... after its list of regular

arguments, for example:

#include <stdarg.h>

void my_print(const char *format, ...){

va_list args;

va_start(args,format);/*Initialize the va_list,

called with the last known parameter.*/

• The macro va arg(args, type) pops the next variable in the list.

• va end(args) handles the return from a function which called

va start. Homework: man va start. Write a function which prints

ints and doubles using a format.

October 12, 2004 C Without a Spoon Slide 100

Orna Agmon ladypine@vipe.technion.ac.il

Function Pointers

From man qsort:

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size,

int(*compar)(const void *, const void *));

Qsort expects a function pointer, to a function which receives two

void pointers and returns an integer.

October 12, 2004 C Without a Spoon Slide 101

Orna Agmon ladypine@vipe.technion.ac.il

Using qsort

int compare_ints(const void *a,const void *b);

int compare_ints(const void *a,const void *b){

const int A=*(const int *) a;

const int B=*(const int *) b;

if(A< B) return -1;

if(A==B) return 0;

else return 1;

}

void sort_int(int *s,int n){

qsort(s,n,sizeof(int),compare_ints);

return;

}

October 12, 2004 C Without a Spoon Slide 102

Orna Agmon ladypine@vipe.technion.ac.il

Homework - Function Pointers

void myfunc(void){

printf(‘‘Hello World’’);

return;

}

int main(void){

myfunc;

myfunc();

return;

}

what will be printed? Why?

October 12, 2004 C Without a Spoon Slide 103

Orna Agmon ladypine@vipe.technion.ac.il

Re-entrant functions

• A function which does not save its status in global variables or

static variables is state-independent.

• State-independent functions are re-entrant.

• State independent functions can be used for recursion.

• State-independent functions are safe to use with threads. State

independent design is easier to make parallelize later on, even if

you do not consider more CPUs right now.

October 12, 2004 C Without a Spoon Slide 104

Orna Agmon ladypine@vipe.technion.ac.il

Recursion (recursion.c)

#include <stdio.h>

static void recursive_print(const char * const str);

int main(void){

recursive_print("Hello World\n");

return 0;

}

static void recursive_print(const char * const str){

if (str==NULL) return;

if (str[0]==’\0’) return;

printf("\%c",str[0]);

recursive_print(str+1);

return;

}

October 12, 2004 C Without a Spoon Slide 105

Orna Agmon ladypine@vipe.technion.ac.il

Programming Concepts

• Procedural programming: the basic units are procedures:

execution units. return values are of lesser importance.

• Functional programming: basic units are functions, with no side

effects.

• Object Oriented programming (OOP): basic units are variables.

Variables can have functions to work on them

October 12, 2004 C Without a Spoon Slide 106

Orna Agmon ladypine@vipe.technion.ac.il

Object - Oriented Concepts

• Objects and their methods

• Modularity

• Encapsulation - access to private data of the object is limited,

and done by special methods.

• Inheritance - the properties of an object can originate from

properties of a similar, less sofisticated object.

October 12, 2004 C Without a Spoon Slide 107

