
Firewall Piercing

Alon Altman
Haifa Linux Club



Introduction



Topics of this lecture

● Basic topics
– SSH Forwarding

– PPP over SSH

– Using non-standard TCP ports

● Advanced topics
– TCP over HTTP

– Tunneling over UDP

– Tunneling over DNS



Definitions

● The machine requiring access (your laptop) 
will be called the client.

● The client is connected to the Internet behind 
a firewall.

● You may be able to administer another 
machine on the Internet which is the server.

● Finally, you want to connect to some service 
on the Internet – the target, which runs on 
the target host.



SSH Forwarding

● Problem: The firewall blocks outgoing 
connections to certain target hosts or ports.
– Note this exactly the same problem as when 

both the server and the target are behind a 
firewall blocking incoming connections.

● We assume SSH to the server is open.
● Solution: Use ssh's built-in forwarding 

support to forward your connections to the 
target.



SSH Local Forwarding 

● If you need to connect to a specific port on a 
specific target host, use SSH local 
forwarding.

● Assume you wish to connect to irc.inter.net.il 
on port 6667 (irc).

● You can forward local port 9000 to port 6667 
on irc.inter.net.il:
– ssh -l user server -L 9000:irc.inter.net.il:6667

● Now, connect to localhost:9000 in your IRC 
software.



SSH Dynamic Forwarding

● Problem: What if you need to access to 
more than one target host and more than 
one target service?

● Solution: SSH dynamic forwarding simulates 
a SOCKS4 proxy on the local host.

● Simply run SSH with dynamic forwarding:
– ssh -l user server -d 1080

● And then, configure your application to use a 
SOCKS4 proxy on localhost:1080



● Problem: I want to run ICQ (or any other 
non-SOCKSable) service over SSH.

● Solution: Run PPP(point to point protocol) 
over the SSH tunnel.

● Allocates a fake IP to the client.
● All network activity is transparent.
● Care needs to be taken in order to keep a 

working route to server the DNS servers.

PPP over SSH



PPP over SSH - configuration

● In the ppp provider configuration:
– debug
– nodefaultroute
– noauth
– pty "/usr/bin/ssh -t user@server slirp ppp"

● Allow root to access user@server without a 
password (using public keys).

● In the client, setup host specific routes to 
server, and then add only a default route via 
ppp0.



Using non-standard ports

● Problem: The firewall blocks access to a 
specific service (say, SSH) running on the 
server.

● In this case the target host and the server 
are the same (Your machine).

● Solution: Run the target service on a port 
which is open in the firewall and connect via 
this port.

● This can be applied also when the server is 
behind a firewall blocking incoming ports.



Example: SSH on port 80

● Suppose your university blocks all ports 
except 80 (http).

● You wish to have SSH access to your server.
● You can open an SSH server on port 80.

– In the sshd configuration change “Port” to 80.
● In the client (your laptop), connect using the 

non-standard port:
– ssh -p 80 -l user server
– scp -P 80 file user@server:directory/



Non-standard ports: Problem

● Problem: What if you want to run a web 
server as well?

● Solution: Use an iptables based firewall on 
the server to redirect port 80 only for your 
university IP address.
– iptables -t nat -A PREROUTING -p tcp --dport 80 

-s client.ip.addr -j REDIRECT --to-ports 22
● Even if you use a different port, this 

technique allows you to have the one SSH 
server listening on several ports



Example – Some faculty's WiFi

● Limited to students only.
● Any client who knows the ESSID can get an 

IP address without authentication.
● Authentication should be done against a 

special web server.
● Unauthenticated clients' access is blocked.
● However, outgoing TCP (and UDP) port 53 is 

open to the entire network of the institution.



Faculty WiFi – The bypass

● Client is unprivileged laptop in faculty.
● Server is inside the institution, with SSH 

open on port 53.
● Client runs PPP, buffering the data over the 

SSH connection.
● Server runs slirp – a simple user-only PPP 

emulator with NAT.
● Speed is very fast, as the underlying network 

is local and high-speed.



Advanced Topics



TCP over HTTP

● Problem: Web-only Internet connection via a 
proxy (say, in a public library).

● Proxy can be transparent or opaque.
● Can't run ssh on port 80(HTTP), because 

proxy accepts only real HTTP connections.
● Easy Solution: Use HTTP CONNECT. 

HTTP proxies may allow direct connections 
via a special CONNECT mechanism. I won't 
discuss this here.



TCP over HTTP – brute force

● The idea: Run a special web server on the 
server and send special web requests from 
the client.

● Outgoing packets can be encoded as 
requests. Incoming packets encoded as 
replies.

● Overhead is quite low.
● Implementation: GNU httptunnel



Tunneling over UDP

● Problem: Firewall blocks TCP connections 
but allows UDP connections to a specific 
port.

● For example, a restrictive firewall which only 
allows DNS queries, but does not limit the 
target.

● Sometimes found in login-only or for-pay 
WiFi services.

● Solution: Tunnel TCP (or anything else) 
inside UDP packets.



TCP over DNS
(or how to save €10 per hour)

● Problem: A for-pay WiFi service blocks all 
services except DNS for non-paying users.

● Access is allowed only to a specific DNS 
server, which responds only to real DNS 
queries.

● Solution: Tunnel your data over DNS.


