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Introduction

Haskell is a pure functional language. It means that:

Variables never change after definition.

Functions don’t have side effects.

Functions always return the same output given the same
input.
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History

Designed by a committee. [1990s]

(Nevertheless, it is an elegant language.)

Haskell 98 - (Informal) standardization, and basis for further
development.

Named after Haskell B. Curry:
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Nice syntactic features
Guards

Standard if-then-else:

my gcd1 m n = if n ≡ 0 then m
else if m < n then my gcd1 n m
else my gcd1 n (m ‘mod ‘ n)

Guards:

my gcd2 m 0 = m
my gcd2 m n | m < n = my gcd2 n m

| otherwise = my gcd2 n (m ‘mod ‘ n)
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Nice syntactic features
Pattern Matching

Simple Case expressions:

factorial1 n = case n of
0→ 1
n→ n ∗ factorial1 (n − 1)

Pattern Matching:

factorial2 0 = 1
factorial2 n = n ∗ factorial2 (n − 1)
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Lists

A list in Haskell is defined recursively.

Definition

data [a ] = [ ] | a : [a ]

And there’s some syntactic sugar for using lists:

[1 . . 3] ≡ [1, 2, 3] ≡ 1 : [2, 3] ≡ 1 : 2 : 3 : [ ]
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Lazy Lists

Since Haskell is a lazy language, you can define infinite lists:

primes = sieve [2 . .] where
sieve (p : tail) = let

filtered tail = sieve [n | n← tail , n ‘mod ‘ p > 0]
in p : filtered tail

factorial list = 1 : [a ∗ n | a← factorial list
| n← [1 . .]]
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QuickSort

quicksort [ ] = [ ]
quicksort (hd : tail) = quicksort small ++ [hd ] ++ quicksort large

where
small = [x | x ← tail , x 6 hd ]
large = [x | x ← tail , x > hd ]
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Currying

inc x = 1 + x

inc x = (+) 1 x

inc = (+) 1

inc = (+1)
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Pointfree programming

h x = f (g (x))

h x = (f . g) (x)

h = f . g
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Type System Introduction

Haskell uses static typing, but is very expressive because of its
polymorphism and type classes.

Example

reverse1 :: [a ]→ [a ]
reverse1 [ ] = [ ]
reverse1 (hd : tail) = reverse1 tail ++ [hd ]

Since reverse list is polymorphic, you can use it for any type of list:

reverse1 [1, 2, 3]→ [3, 2, 1]

reverse1 "Hello, World"→ "dlroW ,olleH"
An efficient reverse
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Algebraic Data Types

Haskell supports user defined algebraic data types, which combined
with pattern matching are very expressive.

data Maybe a = Nothing | Just a

Example

divide :: (Integral a)⇒ a→ a→Maybe a
divide x 0 = Nothing
divide x y = Just (x ‘div ‘ y)
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Algebraic Data Types
Decomposition using pattern matching

Example

default value :: Maybe a→ a→ a
default value Nothing x = x
default value (Just x) = x
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Algebraic Data Types
Describing complex data structures

Complex data structures can be described (without pointers, of
course).

data Tree a = Leaf a | Branch (Tree a) (Tree a)

size :: Tree a→ Int
size (Leaf ) = 1
size (Branch left right) = 1 + size left + size right
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Encapsulation

There is no abstract type construct in Haskell, but instead there is
a hierarchial module system, which can be used for encapsulation.

Example

module Stack (Stack, push, pop, empty ,
top, is empty) where

data Stack a = Stk [a ]
empty = Stk [ ]

push (Stk s) x = Stk (x : s)
pop (Stk (x : s)) = Stk s
top (Stk (x : s)) = x
is empty (Stk s) = null s
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Type Classes

In Haskell, Type classes allow both overloading names, and writing
generic functions which are made specific for some class.

Example

class Eq a where
(≡) :: a→ a→ Bool
(6≡) :: a→ a→ Bool

instance Eq Int where
i1 ≡ i2 = eqInt i1 i2
i1 6≡ i2 = not (i1 ≡ i2)
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Type Classes
Generic Classes and Functions

Example

instance (Eq a)⇒ Eq [a ] where
[ ] ≡ [ ] = True
(x : xs) ≡ (y : ys) = x ≡ y && xs ≡ ys
xs 6≡ ys = not (xs ≡ ys)

member :: Eq a⇒ a→ [a ] → Bool
member x [ ] = False
member x (y : ys) | x ≡ y = True

| otherwise = member x ys

Haggai Eran An overview of Haskell



Introduction
Features

Haskell Implementation
Summary

Type System
Higher Order Functions
IO and Monads
Testing

Higher Order Functions

Functions are first-class values, and can be passed to other
functions.

Example

map :: (a→ b)→ [a ]→ [b ]
map f [ ] = [ ]
map f (head : tail) = (f head) : (map f tail)

inc :: (Num a)⇒ a→ a
(∗3) :: (Num a)⇒ a→ a

map inc [1, 2, 3] ≡ [2, 3, 4]
map (∗3) [1, 2, 3] ≡ [3, 6, 9]
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map - More Uses

toUpper :: Char → Char
map toUpper "Hello" ≡ "HELLO"

You can even define:

stringToUpper :: String → String
stringToUpper = map toUpper
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IO and Monads

Pure functional language ⇒ No side-effects in functions.
So how can we perform IO?
With the IO Monad!
A value of the type IO a represent an action, which returns a value
of type a, once performed.

Example

getLine :: IO String
putStr :: String → IO ()
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IO Syntax

Example

greet :: String → String
greet name = "Hello, " ++ name

main :: IO ()
main = do

name ← getLine
putStrLn (greet name)
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Monadic Pointfree Syntax

Example

echo :: IO ()
echo = putStr "> ">>

getLine >>=
putStr >>
putStr "\n"

The Monad Type Class
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The Maybe Monad

Maybe

f :: Int →Maybe Int
complex function :: Maybe Int →Maybe Int
complex function mint = do

i1 ← mint
i2 ← f i1
return i2
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The List Monad

List

(×) :: [a ]→ [b ]→ [(a, b)]
xs × ys = do

x ← xs
y ← ys
return (x , y)

Example

[1, 2] × [3, 4]→ [(1, 3), (1, 4), (2, 3), (2, 4)]
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Parsing

Parsec

perl variable = do
sigil ← oneOf "&$@%"
name ← many alphaNum
return (sigil : name)

Example

parse perl variable "Parser" "$var"→ Right "$var"

parse perl variable "Parser" "not a var"→
Left "Parser" (line 1, column 1) : unexpected "n"
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GUI - Gtk2Hs

main gui :: IO ()
main gui = do

initGUI
window ← windowNew
button ← buttonNew
set window [containerBorderWidth := 10,

containerChild := button ]
set button [buttonLabel := "Hello World"]
onClicked button (putStrLn "Hello World")
onDestroy window mainQuit
widgetShowAll window
mainGUI
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Testing with QuickCheck

property factorial1 n =
factorial1 (n + 1) ‘div ‘ factorial1 n ≡ n + 1

quickCheck property factorial1
results in

*** Exception: stack overflow

property factorial2 n = n > 0 ==>
factorial1 (n + 1) ‘div ‘ factorial1 n ≡ n + 1

quickCheck property factorial2
results in

OK, passed 100 tests.
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Some more QuickCheck examples

property gcd n = n > 0 ==> (n ‘mod ‘ (my gcd2 n (n + 2))) ≡ 0

Checking only specific values:

property primes = forAll (two some primes) $ λ(p, q)→
(p ≡ q || gcd p q ≡ 1)
where some primes = elements $ take 200 primes

Lists can be generated too:

property reverse list = (reverse1 . reverse1) list ≡ list
property quicksort list = quicksort list ≡ List.sort list
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What else?

Implementations: GHC, Hugs, Helium, JHC, YHC

Parallel GHC, Concurrent GHC, STM

Cabal

Visual Haskell, EclipseFP

Famous Projects Using Haskell: Pugs, Darcs.

DSLs, DSELs.

Literate Haskell

Haggai Eran An overview of Haskell



Introduction
Features

Haskell Implementation
Summary

The Spineless Tagless G-Machine Language
Memory Representation
Running on Ordinary Machines

Few Implementation Notes

These notes are based on the article about the “Spineless
Tagless G-Machine” by Simon Peyton Jones, which is the
basis for current implementations of the Glasgow Haskell
Compiler - GHC.

I’ll only speak about some of the basic details, because I have
much more to learn ...
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The Compiler Structure

1 Preprocessing - Removing the literate markup, if needed, and
also running a C preprocessor, if asked by the user.

2 Compiling into the smaller Core language, an intermediate
language without the syntactic sugar. Type checking is
performed, and pattern matching is translated into simple
case expressions.

3 Some optimizations are performed on the intermediate
language.

4 The Core language is translated into the STG language.

5 The STG language is translated by a code generator into C, or
into machine code.

We’ll focus on the STG language, and how it is translated into C.
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The Spineless Tagless G-Machine Language

The STG language is a very austere functional language, or a
subset of Haskell.
It contains only the following constructs:

Function applications, for using functions.

let and λ expressions, for creating new bindings.

case expressions, for evaluating expressions.

Constructor applications, for defining values.
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Translation into STG

Example

map f [ ] = [ ]
map f (head : tail) = (f head) : (map f tail)

is translated to

map = { }λn{head , list } →
case list of

Nil { } → Nil{ }
Cons{head , tail } →

let f head = {f , head }λu{ } → f {y }
map tail = {f , tail } λu{ } → map{f , tail }

in Cons{f head ,map tail }
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Memory Representation

Many kinds of values:

Functions: {free list }λn{arg list } → expr
Contain code, and pointers to their free variables.

Thunks: {free list }λu{ } → expr
Unevaluated expressions, contain the code to evaluate, and
any needed pointer.

Constructors: Constructor{arg list }
Contain the pointers to the constructors’ parameters, which
might be functions or thunks themselves.

Primitive Values:
Integers, characters, floating point numbers, etc.
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Closures

In a polymorphic language, you cannot always know statically if a
pointer is a function or a thunk, for example:

compose f g x = f (g x)

g x might be a function or a thunk, on every call to compose.
It is convenient to hold all values (except the primitives) in
memory in the same structure, as closures:
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A mapping to ordinary machines

The STG language was defined with operational semantics. Each
language construct has an operational meaning:

Construct Operational meaning

Function application Tail call
Let expression Heap allocation
Case expression Evaluation
Constructor application Return to continuation
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The STG Abstract Machine

The abstract machine which the implementation is based on has:

Argument stack - a stack for passing parameters to functions.

Return stack - a stack for continuations.

Update stack - a stack for update frames (updating thunks).

The machine also includes a heap (garbage collected) for holding
closures.
This is only the abstract machine, which is easier to understand.
The real implementation has a different representation for these
stacks.
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Function Application

A function call is implemented by

Pushing its arguments to the argument stack.

Tail-calling the function (A jump into the function’s code).

Example

map{f , tail }
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Let expressions

let expressions give local names to closures, and evaluate an
expression in the local environment.
They are implemented by:

Constructing the closures in the heap.

Evaluating the expression

Example

let f head = {f , head }λu{ } → f {y }
map tail = {f , tail } λu{ } → map{f , tail }

in Cons{f head ,map tail }
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Case expressions

case expressions force evaluation of an expression, and then
choose from alternatives based on its value.
They are implemented by:

Pushing a continuation (or continuations) onto the return
stack.
Evaluate the expression.
The evaluation is responsible for continuing according to the
right alternative.

Example

case list of
Nil { } → ...
Cons{head , tail } → ...
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Constructor Applications

The application of a constructor is evaluated from within some
case expression. The implementation:

Pop the continuation from the return stack.
Jump to the right alternative.

After return, either:

a special register points to the constructor’s closure, for the
inspecting its values, or
they could be returned in registers directly.

Example

case list of
Nil { } → Nil{ }
Cons{head , tail } → let ...
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Constructor Applications
Notes

Returning in registers can avoid allocating a new closure in
the heap, and this is why the machine is called spineless.

The fact that the alternatives can be chosen without holding
a tag field for every different constructor is the reason why it
is called tagless.
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Updating Thunks

In order to update thunks after they are evaluated:
1 When entering an updatable closure

An update frame is pushed to the update stack, which contain
a pointer to the closure to be updated, and the contents of the
arguments and return stacks.
The return stack and argument stack are made empty.
Its sometimes nice to update the closure temporarily with a
“black hole” closure.

2 When evaluation of a closure is complete an update is
triggered.

If the closure is a function, it won’t find enough arguments on
the argument stack.
If the closure is a value, it will attempt to pop a continuation
from the return stack, which is empty.

3 The update is either in-place, or by an indirection closure
which is removed by GC.
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Links

http://haskell.org

Learning Haskell
Audrey Tang
http://perlcabal.org/∼autrijus/osdc/haskell.xul

The Evolution of a Haskell Programmer
Fritz Ruehr
http:
//www.willamette.edu/∼fruehr/haskell/evolution.html

A history of haskell: being lazy with class.
http://research.microsoft.com/∼simonpj/papers/
history-of-haskell/history.pdf
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Links
Implementation

GHC Commentary
http://hackage.haskell.org/trac/ghc/wiki/Commentary

Implementing lazy functional languages on stock hardware: The
spineless tagless g-machine.
http://citeseer.ist.psu.edu/
peytonjones92implementing.html.

GHC Hackathon Videos
http:
//video.google.com/videosearch?q=GHC+Hackathon&so=0
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Thank you!

Questions?
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An Efficient Reverse

By the way: The previous slide’s reverse1 function has O(n2)
complexity, since each ++ operation is linear in the first list’s
length. A more efficient version is:

reverse2 :: [a ]→ [a ]
reverse2 list = helper list [ ]

where
helper [ ] reversed = reversed
helper (hd : tail) reversed = helper tail (hd : reversed)

which runs in O(n) complexity.
Back
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Monad Class

class Monad m where
(>>=) :: ∀a b . m a→ (a→ m b)→ m b
(>>) :: ∀a b . m a→ m b → m b
return :: ∀a . a→ m a
fail :: ∀a . String → m a

Back
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