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High Performance Computing 
on GPUs 

using
NVIDIA CUDA 

Slides include some material from GPGPU tutorial at  SIGGRAPH2007: 
http://www.gpgpu.org/s2007
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Outline
● Motivation
● Stream programming

– Simplified HW and SW model

– Simple GPU programming example

● Increasing stream granularity
– Using shared memory

– Matrix multiplication

● Improving performance
● Some real life example
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Disclaimer

This lecture will discuss GPUs from the 
Parallel Computing perspective 

since I am NOT an expert in graphics hardware
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Why GPUs-II
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Is it a miracle? NO! 
● Architectural solution prefers parallelism over 

single thread performance!
● Example problem – I have 100 apples to eat

1)“high performance computing” objective: optimize 
the time of eating one apple

2) “high throughput computing” objective: optimize 
the time of eating all apples

● The 1st option has been exhausted!!!
● Performance = parallel hardware + scalable 

parallel program!
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Why not in CPUs?
● Not applicable to general purpose computing
● Complex programming model
● Still immature

– Platform is a moving target
● Vendor-dependent architectures
● Incompatible architectural changes from generation to 

generation

– Programming model is vendor dependent
● NVIDIA – CUDA
● AMD(ATI) – Close To Metal (CTM)
● INTEL ( LARRABEE) – nobody knows
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Simple stream programming model
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Generic GPU 
hardware/software model

● Massively parallel processor: many concurrently running 
threads (thousands)

● Threads access global GPU memory

● Each thread has limited number of private registers

● Caching: two options

– Not cached (latency hidden through time-slicing)

– Cached with unknown cache organization, but optimized 
for 2D spatial locality

● Single Program Multiple Data (SPMD) model 

– The same program, called kernel, is executed on the 
different data



10Mark Silberstein, Technion

How we design an algorithm

● Problem: compute product of two vectors 
A[10000] and B[10000] and store it in C[10000]

● Think data-parallel: same set of operations 
(kernel) applied to multiple data chunks
– apply fine grain parallelization (caution here! - see  

in a few slides)
● Thread creation is cheap
● The more threads the better 

● Idea: one thread multiplies 2 numbers
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How we implement an algorithm

● CPU

1.Allocate three arrays in GPU memory

2.Copy data CPU -> GPU

3.Invoke kernel with 10000 threads, pass ptrs to the 
arrays from the step 1.

4.Wait until complete and copy data GPU->CPU

● GPU
– Get my threadID 

– C[threadId]=A[threadId]*B[threadId]
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Any  performance estimates?
● Performance criterion - GFLOP/s
● Key issue: memory or CPU bound?

● We can fully utilize GPUs only if the data can be made 
available in the ALUs on time!!! 

● Otherwise – at most the number of operations which can 
be performed on the available data.

● Arithmetic intensity: number of FLOPs per 
memory access
– Performance= min[MemBW*A,GPU HW]

● For example: A=1/3, GPU HW=345GFLOP/s, 
MemBW=22GFloat/s: Performance= ~7GFLOP/s 
 ~2% utilization!!!
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Enhanced model
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● Best used for streaming-like workloads
● Embarrassingly parallel: running algorithm on multiple data 
● Low data reuse

– High number of operations per memory access 
(arithmetic intensity) to allow latency hiding

● Low speedups otherwise 
– Memory bound applications benefit from higher 

memory bandwidth, but result in low GPU utilization

Generic model - limitations
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NVIDIA CUDA extension: 
Fast on-chip memory

Adopted from CUDA programming guide
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Changed programming model
● Low latency/high bandwidth memory shared 

between threads in one thread block (up to 512 
threads). 

● Programming model: stream of thread blocks
● Challenge: optimal structuring of computations 

to take advantage of fast memory 

16K 16K 16K
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Thread block

● Scheduling of threads in a TB
– Warp: thread in one warp are executed concurrently 

 ( well... Half-warp in lock-step, half-warps are 
swapped 

– Warps MAY be executed concurrently. Otherwise – 
according to the thread ID in the warp

● Thread communication in a TB
– Shared memory

– TB-wide synchronization (barrier)
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Multiple thread blocks

● Thread blocks are completely independent
– No scheduling guarantees

● Communication – problematic
– Atomic memory instructions available

– Synchronization is dangerous: may bring to 
deadlock if not enough hardware

● Better think of thread blocks as a STREAM
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Breaking the “stream” hardware 
abstraction

● Processors are split into groups 
– Each group (multiprocessor -MP) has fast memory 

and set of registers shared among all processors
● NVIDIA GTX8800: 128 6-thread processors per MP, 

shared memory size: 16KB, 8192 4B registers, 16 MPs 
per video card

● Thread block is scheduled on a SINGLE MP, 
why?
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Thread blocks and MP

● Different thread blocks may be scheduled (via 
preemption) on the same MP to allow better 
utilization and global memory latency hiding

● PROBLEM: shared memory and register file 
should be large enough to allow preemption!

● Determining the best block size is kernel-
dependent!
– More threads per block – less blocks can be 

scheduled – may lead to lower throughput

– Fewer threads per block – more blocks, but less 
registers/shared memory per block
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Matrix multiplication example

● Product of two NxN matrices
● Streaming approach

– Each thread computes single value of the output

– Is it any good??? No! 
● Arithmetic Intensity =(2N-1)/(2N+1) => Max performance: 

22GFLOP/s (instead of 345!!!)

– Why? O(N) data reuse is NOT utilized

– Optimally: Arithmetic intensity= (2N-1)/(2N/N 
+1)=O(N) => CPU bound!!!!!
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Better approach (borrowed from Mark Harris slides)
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Generalized approach to shared 
memory

● Think of it as a distributed user-managed cache
● When regular access pattern - better to have implicit cache 

management 

● In matrix product we know “implicitly” that the access is 
sequential

● Less trivial for irregular access pattern -> implement 
REAL cache logic interleaved into the kernel

● devise cache tag, handle misses, tag collisions, etc,
● analyze it just like regular cache

● Sorry guys, self reference here: “Efficient 
sum-product computation on GPUs” 
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CUDA
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CUDA at glance
– Compiler

● Handles language extensions
● Compiles GPU code into HW-independent intermediate 

code (read PTX and NVCC spec to know more)

– Runtime
● GPU memory management/transfer, CPU->GPU control,  

etc...Supports emulation mode for debugging

– NO PROFILER YET (expecting soon)

– Driver 
● JIT compilation and optimizations, mapping onto graphics 

pipeline, (sign NDA to know more.). Watchdog problem for 
kernels over 5 seconds (not on LINUX without X!!)

– HW support (only in new GPUs)
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Sample code walkthrough: 
from NVIDIA User guide

(see http://developer.nvidia.com/object/cuda.html) 
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Few performance guidelines
Check SIGGRAPH tutorial for more

● Algorithm: data parallel + 
structure to use shared 
memory (exploit the data 
reuse!)

● Estimate upper bounds!

● Coherent memory 
accesses!

● Use many threads

● Unroll loops!
● Use fast version of integer 

operations or avoid them 
altogether 

● Minimize synchronization where 
possible

● Optimize TB size where 
possible. (occupancy: # 
warps per MP as a possible 
measure) in conjunction with 
register and shared memory 
use

● Know to use constant and 
texture memory

● Avoid divergence of a single 
warp

● Minimize CPU<-> GPU 
memory transfers
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Real life application: 
genetic linkage analysis

● Used to find disease provoking genes
● Can be very demanding
● Our research: map computations onto inference 

in Bayesian networks
● One approach: parallelize to use thousands of 

computers worldwide (see “Superlink-online”)
● Another approach: parallelize to take advantage 

of GPUs
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Method

● Parallelize sum-product computations
– Generalization of matrix chain product

– More challenging data access pattern

● Shared memory as a user-managed cache
– Explicit caching mechanism is implemented
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Results

● Performance comparison: NVIDIA GTX8800 <-
>Single core of Intel Dual Core 2, 3GHz, 2M L2

● Speedup up to ~60 on synthetic benchmarks 
( 57GFLOPs peak vs. ~0.9GFLOP peak)

● Speedup up to 12-15 on real Bayesian networks
● Speedup up to 700(!) if log scale used for better 

precision
● More on this: see my home page
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Conclusion

● GPUs are great for HPC
● CUDA rocks! 

– Short learning curve 

– Easy to build proof of concepts 

● GPUs seem to be the “next” many-cores 
architecture 
– See “The Landscape of Parallel Computing 

Research: A View from Berkeley”

● Go and try it!
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Resources

● http://www.gpgpu.org

● http://developer.nvidia.com/object/cuda.html

● CUDA forums @NVIDIA: 
http://forums.nvidia.com/index.php?showforum=62

http://www.gpgpu.org/
http://developer.nvidia.com/object/cuda.html
http://forums.nvidia.com/index.php?showforum=62

