High Performance Computing on GPUs using NVIDIA CUDA

Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007

Outline

- Motivation
- Stream programming
 - Simplified HW and SW model
 - Simple GPU programming example
- Increasing stream granularity
 - Using shared memory
 - Matrix multiplication
- Improving performance
- Some real life example

Disclaimer

This lecture will discuss GPUs from the Parallel Computing perspective since I am NOT an expert in graphics hardware

Motivation: Computational Power

- GPUs are fast...
 - 3.0 GHz Intel Core2 Quad (QX6850):
 - Computation: 96 GFLOPS peak
 - Memory bandwidth: 21 GB/s peak
 - Price: \$1100 (chip)
 - NVIDIA GeForce 8800 GTX:
 - Computation: 330 GFLOPS observed
 - Memory bandwidth: 55.2 GB/s observed
 - **Price**: \$550 (board)
- GPUs are getting faster, faster
 - CPUs: 1.4× annual growth
 - GPUs: 1.7×(pixels) to 2.3× (vertices) annual growth

Why GPUs-II

Is it a miracle? NO!

- Architectural solution prefers parallelism over single thread performance!
- Example problem I have 100 apples to eat
 - 1) "high performance computing" objective: optimize the time of eating one apple
 - 2) "high throughput computing" objective: optimize the time of eating all apples
- The 1st option has been exhausted!!!
- Performance = parallel hardware + scalable parallel program!

Why not in CPUs?

- Not applicable to general purpose computing
- Complex programming model
- Still immature
 - Platform is a moving target
 - Vendor-dependent architectures
 - Incompatible architectural changes from generation to generation
 - Programming model is vendor dependent
 - NVIDIA CUDA
 - AMD(ATI) Close To Metal (CTM)
 - INTEL (LARRABEE) nobody knows

Simple stream programming model

Generic GPU hardware/software model

- Massively parallel processor: many concurrently running threads (thousands)
- Threads access global GPU memory
- Each thread has limited number of private registers
- Caching: two options
 - Not cached (latency hidden through time-slicing)
 - Cached with unknown cache organization, but optimized for 2D spatial locality
- Single Program Multiple Data (SPMD) model
 - The same program, called *kernel*, is executed on the different data

How we design an algorithm

- Problem: compute product of two vectors A[10000] and B[10000] and store it in C[10000]
- Think data-parallel: same set of operations (kernel) applied to multiple data chunks
 - apply fine grain parallelization (caution here! see in a few slides)
 - Thread creation is cheap
 - The more threads the better
- Idea: one thread multiplies 2 numbers

How we implement an algorithm

CPU

- 1.Allocate three arrays in GPU memory
- 2.Copy data CPU -> GPU
- 3.Invoke kernel with 10000 threads, pass ptrs to the arrays from the step 1.
- 4. Wait until complete and copy data GPU->CPU

GPU

- Get my threadID
- C[threadId]=A[threadId]*B[threadId]

Any performance estimates?

- Performance criterion GFLOP/s
- Key issue: memory or CPU bound?
 - We can fully utilize GPUs only if the data can be made available in the ALUs on time!!!
 - Otherwise at most the number of operations which can be performed on the available data.
- Arithmetic intensity: number of FLOPs per memory access
 - Performance= min[MemBW*A,GPU HW]
- For example: A=1/3, GPU HW=345GFLOP/s, MemBW=22GFloat/s: Performance= ~7GFLOP/s ~2% utilization!!!

Enhanced model

Generic model - limitations

- Best used for streaming-like workloads
 - Embarrassingly parallel: running algorithm on multiple data
 - Low data reuse
 - High number of operations per memory access (arithmetic intensity) to allow latency hiding
- Low speedups otherwise
 - Memory bound applications benefit from higher memory bandwidth, but result in low GPU utilization

NVIDIA CUDA extension: Fast on-chip memory

Without shared memory

With shared memory

Changed programming model

 Low latency/high bandwidth memory shared between threads in one thread block (up to 512

- Programming model: stream of thread blocks
- Challenge: optimal structuring of computations to take advantage of fast memory

Thread block

- Scheduling of threads in a TB
 - Warp: thread in one warp are executed concurrently (well... Half-warp in lock-step, half-warps are swapped
 - Warps MAY be executed concurrently. Otherwise according to the thread ID in the warp
- Thread communication in a TB
 - Shared memory
 - TB-wide synchronization (barrier)

Multiple thread blocks

- Thread blocks are completely independent
 - No scheduling guarantees
- Communication problematic
 - Atomic memory instructions available
 - Synchronization is dangerous: may bring to deadlock if not enough hardware
- Better think of thread blocks as a STREAM

Breaking the "stream" hardware abstraction

- Processors are split into groups
 - Each group (multiprocessor -MP) has fast memory and set of registers shared among all processors
 - NVIDIA GTX8800: 128 6-thread processors per MP, shared memory size: 16KB, 8192 4B registers, 16 MPs per video card
- Thread block is scheduled on a SINGLE MP, why?

Thread blocks and MP

- Different thread blocks may be scheduled (via preemption) on the same MP to allow better utilization and global memory latency hiding
- PROBLEM: shared memory and register file should be large enough to allow preemption!
- Determining the best block size is kerneldependent!
 - More threads per block less blocks can be scheduled – may lead to lower throughput
 - Fewer threads per block more blocks, but less registers/shared memory per block

Matrix multiplication example

- Product of two NxN matrices
- Streaming approach
 - Each thread computes single value of the output
 - Is it any good??? No!
 - Arithmetic Intensity =(2N-1)/(2N+1) => Max performance: 22GFLOP/s (instead of 345!!!)
 - Why? O(N) data reuse is NOT utilized
 - Optimally: Arithmetic intensity= (2N-1)/(2N/N +1)=O(N) => CPU bound!!!!!

Better approach (borrowed from Mark Harris slides)

Example: Matrix Multiplication

- Much better to block the computation
 - each block computes M x M sub-matrix
 - stage sub-matrices of A and B in shared memory
 - each element of A and B loaded N/M times from global memory
- Much less bandwidth

 Much better balance of work to bandwidth

Generalized approach to shared memory

- Think of it as a distributed user-managed cache
- When regular access pattern better to have implicit cache management
 - In matrix product we know "implicitly" that the access is sequential
- Less trivial for irregular access pattern -> implement REAL cache logic interleaved into the kernel
 - devise cache tag, handle misses, tag collisions, etc,
 - analyze it just like regular cache
- Sorry guys, self reference here: "Efficient sum-product computation on GPUs"

CUDA Tool Chain

Standard Libraries: FFT, BLAS,...

Integrated CPU and GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly for Computing

CPU Host Code

CUDA Runtime & Driver

Profiler

CUDA at glance

- Compiler

- Handles language extensions
- Compiles GPU code into HW-independent intermediate code (read PTX and NVCC spec to know more)

- Runtime

- GPU memory management/transfer, CPU->GPU control, etc...Supports emulation mode for debugging
- NO PROFILER YET (expecting soon)
- Driver
 - JIT compilation and optimizations, mapping onto graphics pipeline, (sign NDA to know more.). Watchdog problem for kernels over 5 seconds (not on LINUX without X!!)
- HW support (only in new GPUs)

Sample code walkthrough: from NVIDIA User guide

(see http://developer.nvidia.com/object/cuda.html)

Few performance guidelines

Check SIGGRAPH tutorial for more

- Algorithm: data parallel + structure to use shared memory (exploit the data reuse!)
- Estimate upper bounds!
- Coherent memory accesses!
- Use many threads
- Unroll loops!
- Use fast version of integer operations or avoid them altogether
- Minimize synchronization where possible Mark S

- Optimize TB size where possible. (occupancy: # warps per MP as a possible measure) in conjunction with register and shared memory use
- Know to use constant and texture memory
- Avoid divergence of a single warp
- Minimize CPU<-> GPU memory transfers

Real life application: genetic linkage analysis

- Used to find disease provoking genes
- Can be very demanding
- Our research: map computations onto inference in Bayesian networks
- One approach: parallelize to use thousands of computers worldwide (see "Superlink-online")
- Another approach: parallelize to take advantage of GPUs

Method

- Parallelize sum-product computations
 - Generalization of matrix chain product
 - More challenging data access pattern
- Shared memory as a user-managed cache
 - Explicit caching mechanism is implemented

Results

- Performance comparison: NVIDIA GTX8800 <->Single core of Intel Dual Core 2, 3GHz, 2M L2
- Speedup up to ~60 on synthetic benchmarks (57GFLOPs peak vs. ~0.9GFLOP peak)
- Speedup up to 12-15 on real Bayesian networks
- Speedup up to 700(!) if log scale used for better precision
- More on this: see my home page

Conclusion

- GPUs are great for HPC
- CUDA rocks!
 - Short learning curve
 - Easy to build proof of concepts
- GPUs seem to be the "next" many-cores architecture
 - See "The Landscape of Parallel Computing Research: A View from Berkeley"
- Go and try it!

Resources

- http://www.gpgpu.org
- http://developer.nvidia.com/object/cuda.html
- CUDA forums @NVIDIA: http://forums.nvidia.com/index.php?showforum=62