High Performance Computing
on GPUs
using
NVIDIA CUDA

Slides include some material from GPGPU tutorial at SIGGRAPH2007:
http://www.gpgpu.org/s2007

Mark Silberstein, Technion

Outline

Motivation

Stream programming

- Simplified HW and SW model

- Simple GPU programming example
Increasing stream granularity

- Using shared memory
- Matrix multiplication

Improving performance
Some real life example

Mark Silberstein, Technion

Disclaimer

This lecture will discuss GPUs from the
Parallel Computing perspective
since | am NOT an expert in graphics hardware

Mark Silberstein, Technion

Motivation: Computational Power

« GPUs are fast...
— 3.0 GHz Intel Core2 Quad (QX6850):

» Computation: 96 GFLOPS peak
« Memory bandwidt h: 21 GB/ s peak
* Price: $1100 (chip)

— NVIDIA GeForce 8800 GTX:
« Computation: observed
* Memory bandwidt h: observed
* Price: (board)

« GPUs are getting faster, faster
— CPUs: 1.4x annual growth
— GPUs: 1.7x(pixels) to 2.3x (vertices) annual growth

o =T=1TH A by Qo py e o FO2D T sy e e
mG PU Courtesy Kurt Akeley, Stanford GPUBench projeet

GFLOPS

Why GPUs-II

500 - I . - !
== AMD (GPU)
100 | =m= NVIDIA (GPU) |
== Intel (CPU)
300 | -
200 F -
quad-
100 i core |
dual-core
0
2000 2002 2004 2006 2008

Year
Mark Silberstein, Technion

Is it a miracle? NO!

 Architectural solution prefers parallelism over
single thread performance!

 Example problem — | have 100 apples to eat

1)"high performance computing” objective: optimize
the time of eating one apple

2) “high throughput computing” objective: optimize
the time of eating all apples

* The 1% option has been exhausted!!!

* Performance = parallel hardware + scalable
parallel program!

Mark Silberstein, Technion

Why not in CPUSs?

* Not applicable to general purpose computing
» Complex programming model
 Still immature

- Platform is a moving target

* VVendor-dependent architectures

 Incompatible architectural changes from generation to
generation

- Programming model is vendor dependent

* NVIDIA — CUDA
« AMD(ATI) — Close To Metal (CTM)
* INTEL (LARRABEE) — nobody knows

Mark Silberstein, Technion

Simple stream programming model

Mark Silberstein, Technion

Generic GPU
hardware/software model

Massively parallel processor: many concurrently running
threads (thousands)

Threads access global GPU memory

Each thread has limited number of private registers
Caching: two options

- Not cached (latency hidden through time-slicing)

- Cached with unknown cache organization, but optimized
for 2D spatial locality

Single Program Multiple Data (SPMD) model

— The same program, called kernel, is executed on the
different data

Mark Silberstein, Technion

How we design an algorithm

* Problem: compute product of two vectors
A[10000] and B[10000] and store it in C[10000]
T

nink data-parallel: same set of operations
(kernel) applied to multiple data chunks

- apply fine grain parallelization (caution here! - see
in a few slides)

* Thread creation is cheap
* The more threads the better

* |dea: one thread multiplies 2 numbers

Mark Silberstein, Technion 10

How we implement an algorithm

« CPU
1.Allocate three arrays in GPU memory

2.Copy data CPU -> GPU

3.Invoke kernel with 10000 threads, pass ptrs to the
arrays from the step 1.

4.\Wait until complete and copy data GPU->CPU

 GPU

- Get my threadlD
- CJ[threadld]=A[threadld]*B[threadId]

Mark Silberstein, Technion

11

Any performance estimates?
Performance criterion - GFLOP/s

Key issue: memory or CPU bound?

» \WWe can fully utilize GPUs only if the data can be made
available in the ALUs on time!!!

» Otherwise — at most the number of operations which can
be performed on the available data.

Arithmetic intensity: number of FLOPs per
memory access

- Performance= min[MemBW*A,GPU HW]

For example: A=1/3, GPU HW=345GFLOP/s,
MemBW=22GFloat/s: Performance= ~7GFLOP/s
~2% utilization!!!

Mark Silberstein, Technion 12

Enhanced model

Mark Silberstein, Technion

13

Generic model - limitations

» Best used for streaming-like workloads

 Embarrassingly parallel: running algorithm on multiple data
e Low data reuse

- High number of operations per memory access
(arithmetic intensity) to allow latency hiding

* Low speedups otherwise

- Memory bound applications benefit from higher
memory bandwidth, but result in low GPU utilization

Mark Silberstein, Technion 14

NVIDIA CUDA extension:
Fast on-chip memory

(Control

ALU

ALU

ALU

ALU

ALU

ALU

DL

LI L

Without shared memory

(ol afa]as]

(o] afa]s]

With shared memory

Mark Silberstein, Technion

Adopted from CUDA programming guide

15

Changed programming model

* Low latency/high bandwidth memory shared
between threads in one thread block (up to 512
threads).

Block Block Block
(1, 0) (2, 0)

(o,

- B -

N ~

—
—
—

0)
— —
— 7

— 16K T 16K 16K

R

hread (1, 0) Thread (0, 0) hread (1, 0) hread (1, 0)

* Programming model: stream of thread blocks

» Challenge: optimal structuring of computations
to take advantage of fast memory

Mark Silberstein, Technion

Thread block

» Scheduling of threads ina TB

- Warp: thread in one warp are executed concurrently
(well... Half-warp in lock-step, half-warps are
swapped

- Warps MAY be executed concurrently. Otherwise —
according to the thread ID in the warp

e Thread communicationina IB

- Shared memory
- TB-wide synchronization (barrier)

Mark Silberstein, Technion 17

Multiple thread blocks

* Thread blocks are completely independent
- No scheduling guarantees
 Communication — problematic

- Atomic memory instructions available

- Synchronization is dangerous: may bring to
deadlock if not enough hardware

* Better think of thread blocks as a STREAM

Mark Silberstein, Technion

18

Breaking the “stream” hardware
abstraction

* Processors are split into groups

- Each group (multiprocessor -MP) has fast memory
and set of registers shared among all processors

* NVIDIA GTX8800: 128 6-thread processors per MP,
shared memory size: 16KB, 8192 4B registers, 16 MPs
per video card

 Thread block is scheduled on a SINGLE MP,
why?

Mark Silberstein, Technion 19

Thread blocks and MP

 Different thread blocks may be scheduled (via
preemption) on the same MP to allow better
utilization and global memory latency hiding

« PROBLEM: shared memory and register file
should be large enough to allow preemption!

* Determining the best block size is kernel-
dependent!

- More threads per block — less blocks can be
scheduled — may lead to lower throughput

- Fewer threads per block — more blocks, but less
registers/shared memory per block

Mark Silberstein, Technion

20

Matrix multiplication example

 Product of two NxN matrices
e Streaming approach

- Each thread computes single value of the output
- Is it any good??? No!

 Arithmetic Intensity =(2N-1)/(2N+1) => Max performance:

22GFLOP/s (instead of 345!1!)
- Why? O(N) data reuse is NOT utilized

- Optimally: Arithmetic intensity= (2N-1)/(2N/N

Mark Silberstein, Technion

21

Better apprOaCh (borrowed from Mark Harris slides)
Example: Matrix Multiplication

e Much better to block the computation
- each block computes M x M sub-matrix

- stage sub-matrices of A and B
in shared memory —

- each element of A and B
from global memory

WIDTH

e Much less bandwidth f
« Much better balance of - I

WO r k t 0 b a n d W'i d t h fﬁurn_sm‘. :ﬁurx_:;m?. BLOCK_SIEE BLOCK_SIZE
WIDTH WIDTH

“ 4 w

Generalized approach to shared

memory
Think of it as a distributed user-managed cache

When regular access pattern - better to have implicit cache
management

 In matrix product we know “implicitly” that the access is
sequential

Less trivial for irregular access pattern -> implement
REAL cache logic interleaved into the kernel

 devise cache tag, handle misses, tag collisions, etc,
« analyze it just like regular cache

Sorry guys, self reference here: “Efficient
sum-product computation on GPUs”

Mark Silberstein, Technion 23

CUDA Tool Chain |

Standard Libraries: Integrated CPU
FFT, BLAS.,... and GPU C Source Code

NVIDIA C Compiler

NVIDIA Assembly
for Computing

CUDA Runtime & Driver

CPU Host Code

5

NVIDIA,

CUDA at glance

- Compiler
* Handles language extensions

» Compiles GPU code into HW-independent intermediate
code (read PTX and NVCC spec to know more)

- Runtime

 GPU memory management/transfer, CPU->GPU control,
etc...Supports emulation mode for debugging

- NO PROFILER YET (expecting soon)

— Driver

 JIT compilation and optimizations, mapping onto graphics
pipeline, (sign NDA to know more.). Watchdog problem for
kernels over 5 seconds (not on LINUX without X!!)

- HW support (only in new GPUSs)

Mark Silberstein, Technion 25

Sample code walkthrough:
from NVIDIA User guide

(see http://developer.nvidia.com/object/cuda.html)

Mark Silberstein, Technion

26

Few performance guidelines
Check SIGGRAPH tutorial for more

Algorithm: data parallel +

structure to use shared
memory (exploit the data
reuse!)

Estimate upper bounds!

Coherent memory
accesses!

Use many threads

Unroll loops!

Use fast version of integer
operations or avoid them
altogether

Minimize synchronization where
possible

* Optimize TB size where

possible. (occupancy: #
warps per MP as a possible
measure) in conjunction with
register and shared memory
use

Know to use constant and
texture memory

Avoid divergence of a single
warp

Minimize CPU<-> GPU
memory transfers

Mark Silberstein, Technion

Real life application:
genetic linkage analysis

» Used to find disease provoking genes
» Can be very demanding

* Our research: map computations onto inference
in Bayesian networks

* One approach: parallelize to use thousands of
computers worldwide (see “Superlink-online™)

* Another approach: parallelize to take advantage
of GPUs

Mark Silberstein, Technion

28

Method

« Parallelize sum-product computations

— Generalization of matrix chain product
- More challenging data access pattern

« Shared memory as a user-managed cache

— Explicit caching mechanism is implemented

Mark Silberstein, Technion

29

Results

* Performance comparison: NVIDIA GTX8800 <-
>Single core of Intel Dual Core 2, 3GHz, 2M L2

* Speedup up to ~60 on synthetic benchmarks
(57GFLOPs peak vs. ~0.9GFLOP peak)

o Speedup up to 12-15 on real Bayesian networks

» Speedup up to 700(!) if log scale used for better
precision

* More on this: see my home page

Mark Silberstein, Technion 30

Conclusion

 GPUs are great for HPC
 CUDA rocks!

- Short learning curve
— Easy to build proof of concepts

 GPUs seem to be the “next” many-cores
architecture

- See “The Landscape of Parallel Computing
Research: A View from Berkeley”

« Go and try it!

Mark Silberstein, Technion

31

Resources

* http://www.gpgpu.org
 http://developer.nvidia.com/object/cuda.html

 CUDA forums @NVIDIA:
http://forums.nvidia.com/index.php?showforum=62

Mark Silberstein, Technion

32

http://www.gpgpu.org/
http://developer.nvidia.com/object/cuda.html
http://forums.nvidia.com/index.php?showforum=62

