
1Mark Silberstein, Technion

High Performance Computing
on GPUs

using
NVIDIA CUDA

Slides include some material from GPGPU tutorial at SIGGRAPH2007:
http://www.gpgpu.org/s2007

2Mark Silberstein, Technion

Outline
● Motivation
● Stream programming

– Simplified HW and SW model

– Simple GPU programming example

● Increasing stream granularity
– Using shared memory

– Matrix multiplication

● Improving performance
● Some real life example

3Mark Silberstein, Technion

Disclaimer

This lecture will discuss GPUs from the
Parallel Computing perspective

since I am NOT an expert in graphics hardware

4Mark Silberstein, Technion

5Mark Silberstein, Technion

Why GPUs-II

6Mark Silberstein, Technion

Is it a miracle? NO!
● Architectural solution prefers parallelism over

single thread performance!
● Example problem – I have 100 apples to eat

1)“high performance computing” objective: optimize
the time of eating one apple

2) “high throughput computing” objective: optimize
the time of eating all apples

● The 1st option has been exhausted!!!
● Performance = parallel hardware + scalable

parallel program!

7Mark Silberstein, Technion

Why not in CPUs?
● Not applicable to general purpose computing
● Complex programming model
● Still immature

– Platform is a moving target
● Vendor-dependent architectures
● Incompatible architectural changes from generation to

generation

– Programming model is vendor dependent
● NVIDIA – CUDA
● AMD(ATI) – Close To Metal (CTM)
● INTEL (LARRABEE) – nobody knows

8Mark Silberstein, Technion

Simple stream programming model

9Mark Silberstein, Technion

Generic GPU
hardware/software model

● Massively parallel processor: many concurrently running
threads (thousands)

● Threads access global GPU memory

● Each thread has limited number of private registers

● Caching: two options

– Not cached (latency hidden through time-slicing)

– Cached with unknown cache organization, but optimized
for 2D spatial locality

● Single Program Multiple Data (SPMD) model

– The same program, called kernel, is executed on the
different data

10Mark Silberstein, Technion

How we design an algorithm

● Problem: compute product of two vectors
A[10000] and B[10000] and store it in C[10000]

● Think data-parallel: same set of operations
(kernel) applied to multiple data chunks
– apply fine grain parallelization (caution here! - see

in a few slides)
● Thread creation is cheap
● The more threads the better

● Idea: one thread multiplies 2 numbers

11Mark Silberstein, Technion

How we implement an algorithm

● CPU

1.Allocate three arrays in GPU memory

2.Copy data CPU -> GPU

3.Invoke kernel with 10000 threads, pass ptrs to the
arrays from the step 1.

4.Wait until complete and copy data GPU->CPU

● GPU
– Get my threadID

– C[threadId]=A[threadId]*B[threadId]

12Mark Silberstein, Technion

Any performance estimates?
● Performance criterion - GFLOP/s
● Key issue: memory or CPU bound?

● We can fully utilize GPUs only if the data can be made
available in the ALUs on time!!!

● Otherwise – at most the number of operations which can
be performed on the available data.

● Arithmetic intensity: number of FLOPs per
memory access
– Performance= min[MemBW*A,GPU HW]

● For example: A=1/3, GPU HW=345GFLOP/s,
MemBW=22GFloat/s: Performance= ~7GFLOP/s
 ~2% utilization!!!

13Mark Silberstein, Technion

Enhanced model

14Mark Silberstein, Technion

● Best used for streaming-like workloads
● Embarrassingly parallel: running algorithm on multiple data
● Low data reuse

– High number of operations per memory access
(arithmetic intensity) to allow latency hiding

● Low speedups otherwise
– Memory bound applications benefit from higher

memory bandwidth, but result in low GPU utilization

Generic model - limitations

15Mark Silberstein, Technion

NVIDIA CUDA extension:
Fast on-chip memory

Adopted from CUDA programming guide

16Mark Silberstein, Technion

Changed programming model
● Low latency/high bandwidth memory shared

between threads in one thread block (up to 512
threads).

● Programming model: stream of thread blocks
● Challenge: optimal structuring of computations

to take advantage of fast memory

16K 16K 16K

17Mark Silberstein, Technion

Thread block

● Scheduling of threads in a TB
– Warp: thread in one warp are executed concurrently

 (well... Half-warp in lock-step, half-warps are
swapped

– Warps MAY be executed concurrently. Otherwise –
according to the thread ID in the warp

● Thread communication in a TB
– Shared memory

– TB-wide synchronization (barrier)

18Mark Silberstein, Technion

Multiple thread blocks

● Thread blocks are completely independent
– No scheduling guarantees

● Communication – problematic
– Atomic memory instructions available

– Synchronization is dangerous: may bring to
deadlock if not enough hardware

● Better think of thread blocks as a STREAM

19Mark Silberstein, Technion

Breaking the “stream” hardware
abstraction

● Processors are split into groups
– Each group (multiprocessor -MP) has fast memory

and set of registers shared among all processors
● NVIDIA GTX8800: 128 6-thread processors per MP,

shared memory size: 16KB, 8192 4B registers, 16 MPs
per video card

● Thread block is scheduled on a SINGLE MP,
why?

20Mark Silberstein, Technion

Thread blocks and MP

● Different thread blocks may be scheduled (via
preemption) on the same MP to allow better
utilization and global memory latency hiding

● PROBLEM: shared memory and register file
should be large enough to allow preemption!

● Determining the best block size is kernel-
dependent!
– More threads per block – less blocks can be

scheduled – may lead to lower throughput

– Fewer threads per block – more blocks, but less
registers/shared memory per block

21Mark Silberstein, Technion

Matrix multiplication example

● Product of two NxN matrices
● Streaming approach

– Each thread computes single value of the output

– Is it any good??? No!
● Arithmetic Intensity =(2N-1)/(2N+1) => Max performance:

22GFLOP/s (instead of 345!!!)

– Why? O(N) data reuse is NOT utilized

– Optimally: Arithmetic intensity= (2N-1)/(2N/N
+1)=O(N) => CPU bound!!!!!

22Mark Silberstein, Technion

Better approach (borrowed from Mark Harris slides)

23Mark Silberstein, Technion

Generalized approach to shared
memory

● Think of it as a distributed user-managed cache
● When regular access pattern - better to have implicit cache

management

● In matrix product we know “implicitly” that the access is
sequential

● Less trivial for irregular access pattern -> implement
REAL cache logic interleaved into the kernel

● devise cache tag, handle misses, tag collisions, etc,
● analyze it just like regular cache

● Sorry guys, self reference here: “Efficient
sum-product computation on GPUs”

24Mark Silberstein, Technion

CUDA

25Mark Silberstein, Technion

CUDA at glance
– Compiler

● Handles language extensions
● Compiles GPU code into HW-independent intermediate

code (read PTX and NVCC spec to know more)

– Runtime
● GPU memory management/transfer, CPU->GPU control,

etc...Supports emulation mode for debugging

– NO PROFILER YET (expecting soon)

– Driver
● JIT compilation and optimizations, mapping onto graphics

pipeline, (sign NDA to know more.). Watchdog problem for
kernels over 5 seconds (not on LINUX without X!!)

– HW support (only in new GPUs)

26Mark Silberstein, Technion

Sample code walkthrough:
from NVIDIA User guide

(see http://developer.nvidia.com/object/cuda.html)

27Mark Silberstein, Technion

Few performance guidelines
Check SIGGRAPH tutorial for more

● Algorithm: data parallel +
structure to use shared
memory (exploit the data
reuse!)

● Estimate upper bounds!

● Coherent memory
accesses!

● Use many threads

● Unroll loops!
● Use fast version of integer

operations or avoid them
altogether

● Minimize synchronization where
possible

● Optimize TB size where
possible. (occupancy: #
warps per MP as a possible
measure) in conjunction with
register and shared memory
use

● Know to use constant and
texture memory

● Avoid divergence of a single
warp

● Minimize CPU<-> GPU
memory transfers

28Mark Silberstein, Technion

Real life application:
genetic linkage analysis

● Used to find disease provoking genes
● Can be very demanding
● Our research: map computations onto inference

in Bayesian networks
● One approach: parallelize to use thousands of

computers worldwide (see “Superlink-online”)
● Another approach: parallelize to take advantage

of GPUs

29Mark Silberstein, Technion

Method

● Parallelize sum-product computations
– Generalization of matrix chain product

– More challenging data access pattern

● Shared memory as a user-managed cache
– Explicit caching mechanism is implemented

30Mark Silberstein, Technion

Results

● Performance comparison: NVIDIA GTX8800 <-
>Single core of Intel Dual Core 2, 3GHz, 2M L2

● Speedup up to ~60 on synthetic benchmarks
(57GFLOPs peak vs. ~0.9GFLOP peak)

● Speedup up to 12-15 on real Bayesian networks
● Speedup up to 700(!) if log scale used for better

precision
● More on this: see my home page

31Mark Silberstein, Technion

Conclusion

● GPUs are great for HPC
● CUDA rocks!

– Short learning curve

– Easy to build proof of concepts

● GPUs seem to be the “next” many-cores
architecture
– See “The Landscape of Parallel Computing

Research: A View from Berkeley”

● Go and try it!

32Mark Silberstein, Technion

Resources

● http://www.gpgpu.org

● http://developer.nvidia.com/object/cuda.html

● CUDA forums @NVIDIA:
http://forums.nvidia.com/index.php?showforum=62

http://www.gpgpu.org/
http://developer.nvidia.com/object/cuda.html
http://forums.nvidia.com/index.php?showforum=62

