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Structure of this meeting

First hour - lecture
Second hour - Q&A
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Your desktop environment
The commandline
Text editors

“Just like Windows”
Or rather, just like the Mac

Icons, documents, right/double clicks
Various desktop environments
Web browsing
Office suite
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Your desktop environment
The commandline
Text editors

Your home directory

Per-user
Often saved on the network
In Windows - Documents and Settings
Hidden .files
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Your desktop environment
The commandline
Text editors

What do we need this for?

For day-to-day tasks, you don’t
Fast and efficient (i.e. tab completion)
Excellent for working with remote servers
Powerful shell scripting (or CSH)
Absolutely not DOS
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Your desktop environment
The commandline
Text editors

Basic usage

Commands we’ll be using here: ls, cat, cd, cp, mv, rm,
echo

Arrows and Tab
$PATH

Taught in the course
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Your desktop environment
The commandline
Text editors

T2, SSH, etc

From Windows: puTTY
From Linux: ssh smyusername@t2.technion.ac.il

T2’s commandline is extremely similar to Linux’s
Do not use telnet!
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Your desktop environment
The commandline
Text editors

Who cares? / Where’s my IDE?

Your most important day-to-day tool
Important features
No IDEs for CSH
VIM and Emacs are installed on T2
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Your desktop environment
The commandline
Text editors

GEdit

Familiar and easy to use
Syntax highlighting
. . . but not much else.
Recommendation: Learn VIM (vimtutor) or Emacs
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Single-file programs
Multi-program files

GCC

Gnu Compiler Collection
Modern, full-featured compiler
Encapsulates many language compilers and linker
T2 has (currently) version 3.4, modern Linuxes have 4.1
Quite different from Borland C++ or Visual C++
Also available in Cygwin and DevCPP
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Single-file programs
Multi-program files

Basic usage of GCC

Compiling and linking (for programs):
gcc -o my_app my_app.c

Running your program:
./my_app
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Single-file programs
Multi-program files

Compiler flags

-ansi

-Wall

-pedantic-errors (no space!)
-g - debug symbols (GDB, DDD)

gcc -ansi -Wall -pedantic-errors
-o my_prog my_prog.c
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Compiling object files

-c - no linking
Otherwise, same flags as before

gcc -ansi -Wall -pedantic-errors
-c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiling object files

-c - no linking
Otherwise, same flags as before

gcc -ansi -Wall -pedantic-errors
-c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Linking the application

Linking gives you a runnable application
We will use gcc for linking (like we did before)
In reality, ld is called
Avoid specifying multiple .c files - compile objects instead

gcc -o my_app main.o lib1.o lib2.o . . .
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Single-file programs
Multi-program files

Common caveats

Circular dependencies
Unit testing
Many more!
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Why makefiles?

Recompiling happens a lot
-Wall -ansi -pedantic-errors -kimchi -. . .
Recompiles only what has changed
Great for distributing programs
Sometimes required by course staff
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In practice

1 Create your Makefile (or makefile)
2 Run make

3 Debug and fix your code
4 Return to step 2
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A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o
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Better yet. . .

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g
OBJECTS=my_prog.o lib1.o lib2.o
HEADERS=header1.h header2.h
all: my_prog
lib1.o: lib1.c $(HEADERS)
lib2.o: lib2.c $(HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:
rm -f my_prog $(OBJECTS)

run: my_prog
./my_prog

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Better yet. . .

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g
OBJECTS=my_prog.o lib1.o lib2.o
HEADERS=header1.h header2.h
all: my_prog
lib1.o: lib1.c $(HEADERS)
lib2.o: lib2.c $(HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:
rm -f my_prog $(OBJECTS)

run: my_prog
./my_prog

Ohad Lutzky Linux for CS Students



Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Many more features (recursion, automake, phony
targets. . . )
For C++, use CXX and CXXFLAGS

Built-in make support in editors
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Summary

Linux is not so bad (right?)
Compiling with the commandline - daunting, but not much
voodoo
Makefiles are a powerful timesaving tool

Outlook
Debuggers
Valgrind
C without a spoon
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