
Getting around Linux
Compiling programs

Makefiles
Summary

Linux for CS Students
A Primer

Ohad Lutzky

Technion IIT
CS Department

November 20th, 2006

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Structure of this meeting

First hour - lecture
Second hour - Q&A

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

“Just like Windows”
Or rather, just like the Mac

Icons, documents, right/double clicks
Various desktop environments
Web browsing
Office suite

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Your home directory

Per-user
Often saved on the network
In Windows - Documents and Settings
Hidden .files

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

What do we need this for?

For day-to-day tasks, you don’t
Fast and efficient (i.e. tab completion)
Excellent for working with remote servers
Powerful shell scripting (or CSH)
Absolutely not DOS

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

What do we need this for?

For day-to-day tasks, you don’t
Fast and efficient (i.e. tab completion)
Excellent for working with remote servers
Powerful shell scripting (or CSH)
Absolutely not DOS

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

What do we need this for?

For day-to-day tasks, you don’t
Fast and efficient (i.e. tab completion)
Excellent for working with remote servers
Powerful shell scripting (or CSH)
Absolutely not DOS

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Basic usage

Commands we’ll be using here: ls, cat, cd, cp, mv, rm,
echo

Arrows and Tab
$PATH

Taught in the course

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Basic usage

Commands we’ll be using here: ls, cat, cd, cp, mv, rm,
echo

Arrows and Tab
$PATH

Taught in the course

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

T2, SSH, etc

From Windows: puTTY
From Linux: ssh smyusername@t2.technion.ac.il

T2’s commandline is extremely similar to Linux’s
Do not use telnet!

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

Who cares? / Where’s my IDE?

Your most important day-to-day tool
Important features
No IDEs for CSH
VIM and Emacs are installed on T2

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

GEdit

Familiar and easy to use
Syntax highlighting
. . . but not much else.
Recommendation: Learn VIM (vimtutor) or Emacs

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Your desktop environment
The commandline
Text editors

GEdit

Familiar and easy to use
Syntax highlighting
. . . but not much else.
Recommendation: Learn VIM (vimtutor) or Emacs

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

GCC

Gnu Compiler Collection
Modern, full-featured compiler
Encapsulates many language compilers and linker
T2 has (currently) version 3.4, modern Linuxes have 4.1
Quite different from Borland C++ or Visual C++
Also available in Cygwin and DevCPP

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Basic usage of GCC

Compiling and linking (for programs):
gcc -o my_app my_app.c

Running your program:
./my_app

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiler flags

-ansi

-Wall

-pedantic-errors (no space!)
-g - debug symbols (GDB, DDD)

gcc -ansi -Wall -pedantic-errors
-o my_prog my_prog.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiler flags

-ansi

-Wall

-pedantic-errors (no space!)
-g - debug symbols (GDB, DDD)

gcc -ansi -Wall -pedantic-errors
-o my_prog my_prog.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiler flags

-ansi

-Wall

-pedantic-errors (no space!)
-g - debug symbols (GDB, DDD)

gcc -ansi -Wall -pedantic-errors
-o my_prog my_prog.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiling object files

-c - no linking
Otherwise, same flags as before

gcc -ansi -Wall -pedantic-errors
-c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Compiling object files

-c - no linking
Otherwise, same flags as before

gcc -ansi -Wall -pedantic-errors
-c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Linking the application

Linking gives you a runnable application
We will use gcc for linking (like we did before)
In reality, ld is called
Avoid specifying multiple .c files - compile objects instead

gcc -o my_app main.o lib1.o lib2.o . . .

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Single-file programs
Multi-program files

Common caveats

Circular dependencies
Unit testing
Many more!

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Why makefiles?

Recompiling happens a lot
-Wall -ansi -pedantic-errors -kimchi -. . .
Recompiles only what has changed
Great for distributing programs
Sometimes required by course staff

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Why makefiles?

Recompiling happens a lot
-Wall -ansi -pedantic-errors -kimchi -. . .
Recompiles only what has changed
Great for distributing programs
Sometimes required by course staff

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

In practice

1 Create your Makefile (or makefile)
2 Run make

3 Debug and fix your code
4 Return to step 2

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Outline

1 Getting around Linux
Your desktop environment
The commandline
Text editors

2 Compiling programs
Single-file programs
Multi-program files

3 Makefiles
Introduction
Writing makefiles

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A sample makefile
Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -o my_prog my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

lib1.o: lib1.c header1.h
lib2.o: lib2.c header2.h
my_prog.o: my_prog.c header1.h header2.h # Has main()
my_prog: my_prog.o lib1.o lib2.o

clean:
rm -f my_prog my_prog.o lib1.o lib2.o

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Better yet. . .

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g
OBJECTS=my_prog.o lib1.o lib2.o
HEADERS=header1.h header2.h
all: my_prog
lib1.o: lib1.c $(HEADERS)
lib2.o: lib2.c $(HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:
rm -f my_prog $(OBJECTS)

run: my_prog
./my_prog

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Better yet. . .

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g
OBJECTS=my_prog.o lib1.o lib2.o
HEADERS=header1.h header2.h
all: my_prog
lib1.o: lib1.c $(HEADERS)
lib2.o: lib2.c $(HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:
rm -f my_prog $(OBJECTS)

run: my_prog
./my_prog

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Introduction
Writing makefiles

Many more features (recursion, automake, phony
targets. . .)
For C++, use CXX and CXXFLAGS

Built-in make support in editors

Ohad Lutzky Linux for CS Students

Getting around Linux
Compiling programs

Makefiles
Summary

Summary

Linux is not so bad (right?)
Compiling with the commandline - daunting, but not much
voodoo
Makefiles are a powerful timesaving tool

Outlook
Debuggers
Valgrind
C without a spoon

Ohad Lutzky Linux for CS Students

	Getting around Linux
	Your desktop environment
	The commandline
	Text editors

	Compiling programs
	Single-file programs
	Multi-program files

	Makefiles
	Introduction
	Writing makefiles

	Summary

