Linux Kernel Networking-
advanced topics:
Neighboring and IPsec

Rami Rosen
ramirose@gmail.com
laifux, January 2008
%]D-aﬁ% www.haifux.org

mailto:ramirose@gmail.com

Contents

e Short rehearsal (4 slides)

* Neighboring Subsystem

struct neighbour

arp

arp_bind_neighbour() method
Duplicate Address Detection (DAD)
LVS (Linux Virtual Sever)

ARPD — arp user space daemon
Neighbour states

Change of IP address/Mac address

e |Psec

Scope

« We will not deal with multicast and with ipv6 and with wireless.
« The L3 network protocol we deal with is ipv4, and the
L2 Link Layer protocol is Ethernet.

Neighboring Subsystem

* All code in this lecture is taken from linux-2.6.24-rc4
e 04-Dec-2007

« (Can be obtained from
http://www.kernel.org/pub/linux/kernel/v2.6/testing/ (and mirrors)

http://www.kernel.org/pub/linux/kernel/v2.6/testing/

Short rehearsal (4 slides)

« The layers that we will deal with (based on the 7 layers model)
are:

Transport Layer (L4) (udp,tcp...)

Network Layer (L3) (ip)

Link Layer (L2) (ethernet)

Short rehearsal (4 slides)

Two most Important data structures: sk _buff and net_device.

sk buff:

dst is an instance of dst_entry; dst is a member in sk_buff.

The lookup in the routing subsystem constructs dst.

It decides how the packet will continue its traversal.

This is done by assigning methods to its input()/output() functions
Each dst_entry has a neighbour member.(with IPSec it is NULL).

When working with IPSec, the dst in fact represents a linked
list of dst_entries. Only the last one is for routing; all previous
dst_entries are for IPSec transformers.

Short rehearsal (4 slides)

net device

net_device represents a Network Interface Card.

net_device has members like mtu, dev_addr (device MAC
address), promiscuity,name of device (eth0,eth1,lo, etc), and
more.

An important member of net_device is flags.
You can disable ARP replies on a NIC by setting IFF_NOARP flag:
ifconfig eth0 -arp
- ifconfig eth0 will show:

« UP BROADCAST RUNNING NOARP MULTICAST ...
- Enabling ARP again is done by: ifconfig eth0 arp.

Short rehearsal (4 slides)

e Ip_input_route() method: performs a lookup in the routing

subsystem for each incoming packet. Looks first in the
routing cache; in case there is a cache miss, looks into the
routing table and inserts an entry into the routing cache. Calls
arp_bind_neighbour() for UNICAST packets only. Returns 0
upon success.

« dev_queue_xmit(struct sk_buff *skb) is called to transmit

the packet, when it is ready. (has L2 destination address)
(net/core/dev.c)

- dev_queue_xmit() passes the packet to the nic device driver
for transmission using the device driver hard_start_xmit()
method.

Neighboring Subsystem

Goals: what is the neighboring subsystem for?

“The world is a jungle in general, and the networking game
contributes many animals.” (from RFC 826, ARP, 1982)

In IPV4 implemented by ARP; in IPv6: ND, neighbour discovery.

Ethernet header is 14 bytes long:

Source Mac address and destination Mac address - 6 bytes each.
- Type (2 bytes). For example, (include/linux/if_ether.h)
* 0x0800 is the type for IP packet (ETH_P_IP)
* 0x0806 is the type for ARP packet (ETH _P_ARP)
« 0X8035 is the type for RARP packet (ETH_P_RARP)

Neighboring Subsystem — struct neighbour

« neighbour (instance of struct neighbour) is embedded in dst,
which is in turn is embedded in sk_buff:

sk_buff

dst

Neighbour
ha
primary_key

Neighboring Subsystem — struct neighbour

* Implementation - important data structures
 struct neighbour (/include/et/neighbour.h)

- ha - the hardware address (MAC address when dealing with
Ethernet) of the neighbour. This field is filled when an ARP
response arrives.

- primary_key — The IP address (L3) of the neighbour.

* lookup in the arp table is done with the primary_key.
- nud_state represents the Network Unreachability Detection

state of the neighbor. (for example, NUD_REACHABLE).

Neighboring Subsystem — struct neighbour
contd

* A neighbour can change its state to NUD_ REACHABLE by
one of three ways:

L4 confirmation.

» Receive ARP reply for the first time or receiving an ARP reply
in response to an ARP request when in NUD_ PROBE state.

« Confirmation can be done also by issuing a sysadmin
command (but it is rare).

Neighboring Subsystem — struct neighbour
contd

* int ("output)(struct sk_buff *skb);

— output() can be assigned to different methods according to the
state of the neighbour. For example, neigh_resolve_output()
and neigh_connected_output(). Initially, it is
neigh_blackhole().

- When a state changes, than also the output function may be
assigned to a different function.

« refcnt -incremented by neigh hold(); decremented by

neigh _release(). We don't free a neighbour when the refcnt
IS higher than 1; instead, we set dead (a member of neighbour)
to 1.

Neighboring Subsystem — struct neighbour
contd

« timer (The callback method is neigh timer_handler()).

» struct hh_cache *hh (defined in include/linux/netdevice.h)

« confirmed — confirmation timestamp.

Confirmation can done from L4 (transport layer).

For example, dst_confirm() calls neigh_confirm().
dst_confirm() is called from tcp_ack() (net/ipv4/tcp_input.c)

and by udp_sendmsg() (net/ipv4/udp.c) and more.
neigh_confirm() does NOT change the state — it is the job

of neigh_timer_handler().

Neighboring Subsystem — struct neighbour
contd

* dev (net_device from which we send packets to the neighbour).
e struct neigh_parms *parms;

- parms include mostly timer tunables, net structure (network
namespaces), etc.

- network namespaces enable multiple instances of the network
stack to the user space.

* A network device belongs to exactly one network namespace.
« CONFIG_NET _NS when building the kernel.

Neighboring Subsystem — struct neighbour
contd

e arp_queue
- every neighbour has a small arp queue of itself.
- There can be only 3 elements by default in an arp_queue.

- This is configurable:/proc/sys/net/ipv4/neigh/default/unres _qlen

struct neigh_table

 struct neigh_table represents a neighboring table

(/include/net/neighbour.h)
The arp table (arp_tbl) is a neigh_table. (/include/net/arp.h)

In IPv6, nd_tbl (Neighbor Discovery table) is a neigh_table
also (include/net/ndisc.h)

There is also dn_neigh_table (DECnet)
(linux/net/decnet/dn_neigh.c) and clip_tbl (for ATM) (net/atm/clip.c)

gc_timer : neigh_periodic_timer() is the callback for garbage
collection.

neigh _periodic_timer() deletes FAILED entries from the ARP
table.

Neighboring Subsystem - arp

 When there is no entry in the ARP cache for the destination IP
address of a packet, a broadcast is sent (ARP request,
ARPOP_REQUEST: who has IP address x.y.z...). This is done by
a method called arp_solicit(). (net/ipv4/arp.c)

- In IPv6, the parallel mechanism is called ND (Neighbor
discovery) and is implemented as part of ICMPV6.

- A multicast is sent in IPv6 (and not a broadcast).

 |f there is no answer in time to this arp request, then we will end up
with sending back an ICMP error (Destination Host Unreachable).

* This is done by arp_error_report() , which indirectly calls
ipv4_link_failure() ; see net/ipv4/route.c.

ARP table

Neighbour Neighbour Neighbour

Neighboring Subsystem - arp

* You can see the contents of the arp table by running:
“cat /proc/net/arp’ or by running the “arp” from a command line .
* |p neigh show is the new method to show arp (from IPROUTE2)

* You can delete and add entries to the arp table; see man arp/man
Ip.

 When using “ip neigh add” you can specify the state of the entry
which you are adding (like permanent,stale,reachable, etc).

Neighboring Subsystem — arp table

« arp command does not show reachability states except the
incomplete state and permanent state:
Permanent entries are marked with M in Flags:

example : arp output

Address HWtype HWaddress Flags Mask Iface
10.0.0.2 (incomplete) ethO
10.0.0.3 ether 00:01:02:03:04:05 CM ethO

10.0.0.138 ether 00:20:8F:0C:68:03 C ethO

Neighboring Subsystem — ip show neigh

 We can see the current neighbour states:

 Example :

« Ip neigh show

192.168.0.254 dev eth0 lladdr 00:03:27:f1:a1:31 REACHABLE
192.168.0.152 dev eth0 lladdr 00:00:00:cc:bb:aa STALE
192.168.0.121 dev ethO lladdr 00:10:18:1b:1c:14 PERMANENT
192.168.0.54 dev ethO lladdr aa:ab:ac:ad:ae:af STALE
192.168.0.98 dev eth0 INCOMPLETE

Neighboring Subsystem — arp

e arp_process() handles both ARP requests and ARP responses.
- net/ipv4/arp.c

- If the target ip (tip) address in the arp header is the loopback
then arp_process() drops it since loopback does not need ARP.

if (LOOPBACK(tip) || MULTICAST(tip))
goto out;

out:

kfree_skb(skb);

return O;

Neighboring Subsystem - arp

(see: #define LOOPBACK(x) (((x) & htonl(0xff000000)) == htonl(0x7f000000)) in
linux/in.h

If it is an ARP request (ARPOP_REQUEST)

we call ip_route _input().

Why ?

In case it is for us, (RTN_LOCAL) we send and ARP reply.
- arp_send(ARPOP_REPLY,ETH P _ARP,sip,dev,tip,sha

,dev->dev_addr,sha),

- We also update our arp table with the sender entry (ip/mac).

Special case: ARP proxy server.

Neighboring Subsystem - arp

* In case we receive an ARP reply — (ARPOP_REPLY)

- We perform a lookup in the arp table. (by calling
___neigh_lookup())

- If we find an entry, we update the arp table by

neigh _update().

Neighboring Subsystem - arp

 If there is no entry and there is NO support for unsolicited ARP we
don't create an entry in the arp table.

- Support for unsolicited ARP by
setting /proc/sys/net/ipv4/conf/all/arp_accept to 1.

- The corresponding macro is:
IPV4 DEVCONF _ALL(ARP_ACCEPT))

- In older kernels, support for unsolicited ARP was done by:
- CONFIG IP_ACCEPT UNSOLICITED ARP

Neighboring Subsystem — lookup

« Lookup in the neighboring subsystem is done via: neigh_lookup()
parameters:

- neigh_table (arp_tbl)

- pkey (ip address, the primary_key of neighbour struct)

- dev (net_device)

- There are 2 wrappers:

- neigh_lookup()

* just one more parameter: creat (a flag: to create a neighbor
by neigh_create() or not))

« and __ neigh lookup _errno()

Neighboring Subsystem — static entries

« Adding a static entry is done by arp -s ipAddress MacAddress
« Alternatively, this can be done by:
ip neigh add ipAddress dev eth0 lladdr MacAddress nud permanent
« The state (nud_state) of this entry will be NUD_PERMANENT
- ip neigh show will show it as PERMANENT.
« Why do we need PERMANENT entries ?

arp_bind_neighbour() method

« Suppose we are sending a packet to a host for the first time.
e adst_entry is added to the routing cache by rt_intern_hash().
« We should know the L2 address of that host.

- 8o rt_intern_hash() calls arp_bind_neighbour().

« only for RTN_UNICAST (not for multicast/broadcast).

- arp_bind_neighbour(): net/iov4/arp.c

- dst->neighbour=NULL, so it calls _neigh lookup errno().

- There is no such entry in the arp table.

- S0 we will create a neighbour with neigh _create() and add
it to the arp table.

arp_bind_neighbour() method

* neigh create() creates a neighbour with NUD_NONE state
- setting nud_state to NUD_NONE is done in neigh_alloc()

Neighboring Subsystem — IFF_NOARP flag

Disabling and enabling arp

ifconfig eth1 -arp
- You will see the NOARP flag now in ifconfig -a

ifconfig eth1 arp (to enable arp of the device).
In fact, this sets the IFF_NOARP flag of net_device.
There are cases where the interface by default is with the

IFF_NOARRP flag (for example, ppp interface,

see ppp_setup() (drivers/net/opp_generic.c)

Changing IP address

« Suppose we try to set eth1 to an IP address of a different
machine on the LAN:

« First, we will set an ip for eth1 in (in FC8,for example)
« /etc/sysconfig/network-scripts/ifcfg-eth

IPADDR=192.168.0.122

and than run:
o ifup etht

Changing IP address - contd.

« we will get:

Error, sone other host already uses address
192.168. 0. 122.

« But:
ifconfig eth0 192.168.0.122
works ok !
Why is it so ?
ifup is from the Initscripts package.

Duplicate Address Detection (DAD)

Duplicate Address Detection mode (DAD)
arping -l eth0 -D 192.168.0.10

- sends a broadcast packet whose source address
is 0.0.0.0.

0.0.0.0 is not a valid IP address (for example, you cannot

set an ip address to 0.0.0.0 with ifconfig)
The mac address of the sender is the real one.

-D flag is for Duplicate Address Detection mode.

File Edi e Go Capture Al 5i 5 He
B e @ & g Q?t..”'“iél@liﬁl WY EX 8

iC)()AbltComp 93:ac:af Broadcast ARP Who has 192.168.0.107? Tell 0.0.0.0 [

»Frame 1 (42 bytes on wire, 42 bytes captured)
-Ethernet II, Src: AbitComp 93:ac:af (00:50:8d:93:ac:af), Dst: Broadcast
»Destination: Broadcast (ff:ff:ff:ff:ff:ff)
»Source: AbitComp 93:ac:af (00:50:8d:93:ac:af)
Type: ARP (0x0806)
- Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (Ox0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: AbitComp 93:ac:af (00:50:8d:93:ac:af)
Sender IP address: 0.0.0.0 (0.0.0.0)
Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)

Target IP address: 192.168.0.10 (192.168.0.10)
& [>
0010 08 00 06 04 00 01 00 50 8d 93 ac af [ELMOIMGILONG P

NADYN £ £ £ ££ £ £ ££ F££ Py T s | NN N~
(= |
Sender IP address (arp.src.proto_ipvd), 4 bytes P:1D:1M:0

Duplicate Address Detection -contd

Code: (from arp_process() ; see /net/ipva/arp.c)

/* Special case: IPv4 duplicate address detection packet (RFC2131)
*/

if (sip ==0) {

if (arp->ar_op == htons(ARPOP_REQUEST) &&
inet_addr_type(tip) == RTN_LOCAL &&
larp_ignore(in_dev,dev,sip,tip))

arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev-
>dev_addr,dev->dev_addr);

goto oui;

}

Neighboring Subsystem — Garbage
Collection

« Garbage Collection
- neigh_periodic_timer()
- neigh_timer_handler()

- neigh_periodic_timer() removes entires which are in
NUD_FAILED state. This is done by setting dead to 1, and
calling neigh_release(). The refcnt must be 1 to ensure no one
else uses this neighbour. Also expired entries are removed.

« NUD_FAILED entries don't have MAC address ; see “ip neigh
show” in the example above).

Neighboring Subsystem — Asynchronous
Garbage Collection

* neigh forced gc() performs synchronous garbage collection.

 ltis called from neigh_alloc() when the number of the entries
in the arp table exceeds a (configurable) limit.

« This limit is configurable (gc_thresh2,gc_thresh3)
/proc/sys/net/ipv4/neigh/default/gc_thresh2
/proc/sys/net/ipv4/neigh/default/gc_thresh3
- The default for gc_thresh3 is 1024.

- Candidates for cleanup: Entries which their reference
count is 1, or which their state is NOT permanent.

Neighboring Subsystem — Garbage
Collection

« Changing the neighbour state is done only in
neigh _timer_handler() .

LVS (Linux Virtual Sever)

http://www.linuxvirtualserver.org/

Integrated into the Linux kernel (in 2.4 kernel it was a patch).
Located in: net/ipv4/ipvs in the kernel tree. No IPV6 support.
LVS has eight scheduling algorithms.

LVS/DR is LVS with direct routing (a load balancing solution).

ipvsadm is the user space management tools (available in
most distros).

Direct Routing is the packet-forwarding-method.
* -0, --gatewaying => Use gatewaying (direct routing)
e See man ipvsadm.

http://www.linuxvirtualserver.org/

LVS/DR

« Example: 3 Real Servers and the Director all have the same
Virtual IP (VIP).

VIP (Virtual IP) VIP

/ Real Server 1

>

Real Server 2 VIP

Linux Director

VIP

Real Server 3

clients

LVS and ARP

« There is an ARP problem in this configuration.

 When you send an ARP broadcast, and the receiving
machine has two or more NICs, each of them responds to
this ARP request.

« Example: a machine with two NICs ;
* ethOis 192.168.0.151 and eth1 is 192.168.0.152.

rat 54.eth - Wireshark - A x
Fle Edit WView Go Capture Analyze Statistics Help

i e Exged herra Ty EE e W@ X 8

E]Eilter:l v | 4p Expression...| 4 Clear | «// Apply

k.4

Destination Protocol Info

Broadcast Who has 192.168.0.151? Tell 192.168.0.54

aa:ab:ac:ad:ae:af ARP 192.168.0.151 is at 00:00:00:aa:bb:cc
aa:ab:ac:ad:ae:af ARP 192.168.0.151 1is at 00:00:00:cc:bb:aa

- Ethernet II, Src: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af), Dst: Broadce"
»Destination: Broadcast (ff:ff:ff:ff:ff:ff)
»Source: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af)
Type: ARP (0x0806)
~Address Resolution Protocol (request)
Hardware type: Ethernet (0x0001)
Protocol type: IP (0x0800)
Hardware size: 6
Protocol size: 4
Opcode: request (0x0001)
Sender MAC address: aa:ab:ac:ad:ae:af (aa:ab:ac:ad:ae:af)
Sender IP address: 192.168.0.54 (192.168.0.54)
Target MAC address: Broadcast (ff:ff:ff:ff:ff:ff)
Target IP address: 192.168.0.151 (192.168.0.151)

>

e ff ff ff ff ff ff aa ab ac ad ae af 08 06 00 01

(ATATINA] N AN NE MAA QAN A1 A ah Aar ad anAa af ~Q A0 QAR 2R

File: "fwork/doc/54.eth" 234 Bytes 00:00:00 P:3D:3M:0

LVS and ARP

« Solutions
1) Set ARP_IGNORE to 1:
- echo “1” > /proc/sys/net/ipv4/conf/ethO/arp_ignore
- echo “1” > /proc/sys/net/ipv4/conf/eth1/arp_ignore
2) Use arptables.

- There are 3 points in the arp walkthrough:
(include/linux/netfilter_arp.h)

- NF_ARP_IN (in arp_rcv() , net/ipv4/arp.c).
- NF_ARP_OUT (in arp_xmit()),net/ipv4/arp.c)

- NF_ARP_FORWARD (in br_nf forward_arp(),
net/bridge/br_netfilter.c)

LVS and ARP

» http://ebtables.sourceforge.net/download.html
- Ebtables is in fact the parallel of netfilter but in L2.

http://ebtables.sourceforge.net/download.html

LVS example (ipvsadm)

* An example for setting LVS/DR on TCP port 80 with three
real servers:

» fpvsadm -C // clear the LVS table

* jpvsadm -A -t DirectorIPAddress:80

« ipvsadm -a -t DirectorlPAddress:80 -r RealServer1 -g
 ipvsadm -a -t DirectorlPAddress:80 -r RealServer2 -g
* ipvsadm -a -t DirectorlPAddress:80 -r RealServer3 -g

« This example deals with tcp connections (for udp
connection we should use -u instead of -t in the last 3 lines).

LVS example:

« fpvsadm -Ln //listthe LVS table
« /proc/sys/net/ipv4/ip_forward should be set to 1

 |n this example, packets sent to VIP will be sent to the load
balancer; it will delegate them to the real server according

to its scheduler. The dest MAC address in L2 header will be
the MAC address of the real server to which the packet will
be sent. The dest IP header will be VIP.

« This is done with NF_IP_LOCAL_IN.

ARPD — arp user space daemon

« ARPD is a user space daemon; it can be used if we want to
remove some work from the kernel.

* The user space daemon is part of iproute2 (/misc/arpd.c)
 ARPD has support for negative entries and for dead hosts.

- The kernel arp code does NOT support these type of
entries!

« The kernel by default is not compiled with ARPD support; we
should set CONFIG_ARPD for using it:

* Networking Support->Networking Options->IP: ARP daemon
support. (It is considered “Experimental®).

* See: /usr/share/doc/iproute-2.6.22/arpd.ps (Alexey Kuznetsov).

ARPD

 We should also set app_probes to a value greater than 0 by
setting

— /proc/sys/net/ipv4/neigh/ethO/app_solicit
— This can be done also by the -a (active_probes) parameter.

- The value of this parameter tells how many ARP requests to
send before that neighbour is considered dead.

* The -k parameter tells the kernel not to send ARP broadcast; in
such case, the arpd daemon is not only listening to ARP requests,
but also send ARP broadcasts.

« We can tune kernel parameters as we like; in fact, we can tune it
so that arp requests will be send only from the daemon and not
from the kernel at all.

ARPD

Activation:
arpd -a 1 -k ethO &

On some distros, you will get the error db_open: No such file

or directory unless you simply run mkdir /var/lib/arpd/ before
(for the arpd.db file).

Pay attention: you can start arpd daemon when there is no
support in the kernel (CONFIG_ARPD is not set).

In this case you, arp packets are still caught by arpd daemon
get_arp pkt() (misc/arpd.c)

But you don't get messages from the kernel.

get_arp_pkt() is not called. (misc/arpd.c)

ARPD

« Tip: to check if CONFIG_ARPD is set, simply see if there are
any resulrs from

- cat /proc/kallsyms | grep neigh_app

Mac addresses

« MAC address (Media Access Control)
« According to specs, MAC address should be unique.
« The 3 first bytes specify a hw manufacturer of the card.

 Allocated by IANA.
- There are exceptions to this rule.
— Technion (?)
- Ethernet HWaddr 00:16:3E:3F.6E:5D

ARPwatch (detect ARP cache
p0|son|ng)

« Changing MAC address can be as a result of some security
attack (ARP cache poisoning, ARP spoofing).

« Arpwatch is an open source tool;helps to detect such attack.
 Activation: arpwatch -d -i ethO (output to stderr)

« Arpwatch keeps a table of ip/mac addresses and senses
when there is a change.

« -dis for redirecting the log to stderr (no syslog, no mail).

* In case someone changed MAC address on the same
network, you will get a message like this:

ARPwatch - Example

From: root (Arpwatch)

To: root

Subject: changed ethernet address (jupiter)
hostname: jupiter
Ip address: 192.168.0.54
ethernet address: aa:bb:cc:dd:ee:ff
ethernet vendor: <unknown>
old ethernet address: 0:20:18:61:e5:e0
old ethernet vendor: ...

Change of IP address/Mac address

« Change of IP address does not trigger notifying its
neighbours.

« Change of MAC address , NETDEV_CHANGEADDR also does
not trigger notifying its neighbours.

|t does update the local arp table by neigh changeaddr().
- Exception to this is irlan eth:
irlan_eth _send gratuitous_arp()

- (net/irda/irlan/irlan_eth.c)

- Some nics don't permit changing of MAC address — you get:
SIOCSIFHWADDR: Device or resource busy

- Sometimes you should only bring down the nic before.

Flushing the arp table

* Flushing the arp:
* |p -statistics neigh flush dev eth0O

« *** Round 1, deleting 7 entries
« *** Flush is complete after 1 round ***

Flushing the arp table -contd

« Specifying twice -statistics will also show which entries were
deleted, their mac addresses, etc...

* |p -statistics -statistics neigh flush dev ethO

e 192.168.0.254 lladdr 00:04:27:fd:ad:30 ref 17 used 0/0/0
REACHABLE

 *™ Round 1, deleting 1 entries ***

o *™ Flush is complete after 1 round ***

« calls neigh_delete() in net/core/neighbour.c
« Changes the state to NUD_FAILED

Neighbour states

* neighbour states

neigh_alloc()

None

4>

Incomplete

Reachable

\

Stale

\

Delay

\

Probe

Neighboring Subsystem — states

« NUD states
- NUD NONE

- NUD_REACHABLE
- NUD_STALE
- NUD_DELAY
D PROBE
- NUD_FAILED
D INCOMPLETE

Neighboring Subsystem — states

 From the beginning of core/neighbour.c:
« Isita (latent) bug ?
if (I(state & NUD _IN_TIMER)) {
#ifndef CONFIG_SMP
printk(KERN_WARNING "neigh: timer & Inud_in_timen\n");
#endif
goto out;

}

Neighboring Subsystem — states

e Special states:
« NUD NOARP
« NUD PERMANENT

 No state transitions are allowed from these states to another
state.

Neighboring Subsystem — states

« NUD state combinations:

« NUD_IN_TIMER (NUD_INCOMPLETE|NUD_REACHABLE|
NUD_DELAY|NUD_PROBE)

- When removing a neighbour, we stop the timer (call
del timer()) only if the state is NUD_IN_TIMER.

« NUD_VALID (NUD_PERMANENT|NUD_NOARP|
NUD_REACHABLE|NUD_PROBE|NUD_STALE|NUD_DELAY)

« NUD_CONNECTED (NUD_PERMANENT|NUD_NOARP|
NUD_REACHABLE)

Neighbour states

 When a neighbour is in a STALE state it will remain in this
state until one of the two will occur

- a packet is sent to this neighbour.
- lts state changes to FAILED.

* neigh_resolve output() and neigh _connected output().

net/core/neighbour.c

* A neighbour in INCOMPLETE state does not have MAC address
set yet (ha member of neighbour)

 So when neigh _resolve output() is called, the neighbour state
is changed to INCOMPLETE.

Neighbour states

 When neigh_connected output() is called, the MAC address of the
neighbour is known; so we end up with calling dev_queue xmit(),
which calls the hard _start xmit() method of the NIC device driver.

» The hard start xmit() method actually puts the frame on the wire.

IPSec

 Works at network IP layer (L3)
« Used in many forms of secured networks like VPNSs.
 Mandatory in IPv6. (not in IPv4)

* Implemented in many operating systems: Linux, Solaris, Windows,
and more.

* In 2.6 kernel : implemented by Dave Miller and Alexey Kuznetsov.
« Transformation bundles.

« Chain of dst entries; only the last one is for routing.

« The dst entries in the chain have A NULL Neighbor as a member.

- (except the last one)

IPSec-cont.

. RFC2401

IPSec-cont.

« User space tools: http://ipsec-tools.sf.net
« Building VPN : http://www.openswan.org/ (Open Source).
« There are also non IPSec solutions for VPN
- OpenVPN uses ssl/tls.
- example: pptp
 struct xfrm_policy has the following member:
- struct dst_entry *bundles.

- _ xfrm4_bundle_create() creates dst_entries (with the
DST_NOHASH flag) see: net/ipv4/xfrm4_policy.c

« Transport Mode and Tunnel Mode.

http://ipsec-tools.sf.net/
http://www.openswan.org/

IPSec-contd.

« Show the security policies:
- Ip xfrm policy show

* Create RSA keys:
- Ipsec rsasigkey --verbose 2048 > keys.txt
- Ipsec showhostkey --left > left.publickey
- ipsec showhostkey --right > right.publickey

IPSec-contd.

Example: Host to Host VPN (using openswan)
In /etc/ipsec.cont:

conn linux-to-linux
left=192.168.0.189
leftnexthop=%direct
leftrsasigkey=0sAQPPAQ...
right=192.168.0.45
rightnexthop=%adirect
rightrsasigkey=0sAQNwD...
type=tunnel

auto=start

IPSec-contd.

service ipsec start (to start the service)

ipsec verify — Check your system to see if IPsec got installed and
started correctly.

psec auto —status

- If you see “IPsec SA established”, this implies success.

Look for errors in /var/log/secure (tedora core) or in kernel syslog

Tips for hacking

« Documentation/networking/ip-sysctl.txt: networking kernel tunabels

« Example of reading a hex address:

* iph->daddr == 0xOAO0A8CO or

means checking if the address is 192.168.0.10 (C0=192,A8=168, 00=0,0A=10).
« A BASH script for getting MAC address from |IP address: (ipToHex.sh)
#!/bin/sh

IP_ADDR=$1

for 1in $(echo ${IP_ADDRY}| sed -e "s/\./ /g"); do

printf '%02X" $I

done

echo

usage example: ./ipToHex.sh 192.168.0.1 => COA80001

Tips for hacking - Contd.

« Disable ping reply:
« echo 1 >/proc/sys/net/ipv4/icmp_echo_ignore_all
« Disable arp: ip link set eth0 arp off (the NOARP flag will be set)
» Also ifconfig eth0 -arp has the same effect.
 How can you get the Path MTU to a destination (PMTU)?
- Use tracepath (see man tracepath).

- Tracepath is from iputils.

Tips for hacking - Contd.

e inet_addr_type() method: returns the address type; the input to this
method is the IP address. The return value can be RTN_LOCAL,

RTN _UNICAST, RTN _BROADCAST, RTN_MULTICAST etc.
See: net/ipv4/fib_frontend.c

Tips for hacking - Contd.

* |n case you want to send a packet from a user space application
through a specified device without altering any routing tables:

struct ifreq interface;

strncpy(interface.ifr_ifrn.ifrn_name, "eth1",IFNAMSIZ);

if (setsockopt(s, SOL_SOCKET, SO_BINDTODEVICE, (char
“)&interface, sizeof(interface)) < 0)

{
printf("error setting SO_BINDTODEVICE");

exit(1);
}

Tips for hacking - Contd.

» Keep iphdr struct handy (printout): (from linux/ip.h)

struct iphdr {

__u8 ihl:4,
version:4;
___u8 tos;
__bel16 tot_len;
__be16 id;
__bel6 frag_off;
__u8 ttl;
__u8 protocol;
__sumi16 check;
___be32 saddr;
___be32 daddr;

/*The options start here. */

b

Tips for hacking - Contd.

« NIPQUAD() : macro for printing hex addresses
* Printing mac address (from net_device):

printk("sk_buff->dev =%02x:%02x:%02x:%02x:%02x:%02x\n",
((skb)->dev)->dev_addr[0], ((skb)->dev)->dev_addr|[1],

((skb)->dev)->dev_addr[2],((skb)->dev)->dev_addr[3],
((skb)->dev)->dev_addr[4], ((skb)->dev)->dev_addr[5]);
* Printing IP address (primary_key) of a neighbour (in hex format):
printk("neigh->primary_key =%02X.%02x.%02x.%02x\n",

neigh->primary_key[0], neigh->primary_key[1],
neigh->primary_key[2],neigh->primary_key[3]);

Tips for hacking - Contd.

« Or:

printk("***neigh->primary_key= %u.%U.%u.%u\n",
NIPQUAD((*(u32*)neigh->primary_key));

« CONFIG_NET_DMA is for TCP/IP offload.

* When you encounter: xfrm / CONFIG_XFRM this has to to do with
IPSEC. (transformers).

Tips for hacking - Contd.

« Showing arp statistics by:
« cat /proc/net/stat/arp_cache

entries allocs destroys hash_grows lookups hits res_failed
rcv_probes_mcast rcv_probes_ucast periodic_gc runs
forced_gc _runs

periodic_gc_runs: statistics of how many times the
neigh _periodic_timer() is called.

Links and more Info

1) Linux Network Stack Walkthrough (2.4.20):
http://gicl.cs.drexel.edu/people/sevy/network/Linux_network stack we
2) Understanding the Linux Kernel, Second Edition

By Daniel P. Bovet, Marco Cesati

Second Edition December 2002

chapter 18: networking.

- Understanding Linux Network Internals, Christian benvenuti

Oreilly , First Edition.

http://gicl.cs.drexel.edu/people/sevy/network/Linux_network_stack_walkthrough.html

Links and more Info

3) Linux Device Driver, by Jonathan Corbet, Alessandro Rubini, Greg
Kroah-Hartman

Third Edition February 2005.
- Chapter 17, Network Drivers
4) Linux networking: (a lot of docs about specific networking topics)
- http://linux-net.osdl.org/index.php/Main_Page

5) netdev mailing list: http://www.spinics.net/lists/netdev/

http://linux-net.osdl.org/index.php/Main_Page
http://www.spinics.net/lists/netdev/

Links and more Info

6) Removal of multipath routing cache from kernel code:

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/

7) Linux Advanced Routing & Traffic Control :
http://lartc.org/
8) ebtables — a filtering tool for a bridging:

http://ebtables.sourceforge.net/

http://lists.openwall.net/netdev/2007/03/12/76
http://lwn.net/Articles/241465/
http://lartc.org/
http://ebtables.sourceforge.net/

Links and more Info

9) Writing Network Device Driver for Linux: (article)

- http://app.linux.org.mt/article/writing-netdrivers?locale=en

http://app.linux.org.mt/article/writing-netdrivers?locale=en

Links and more Info

10) Netconf — a yearly networking conference; first was in 2004.
- http://vger.kernel.org/netconf2004.html
- http://vger.kernel.org/netconf2005.html
- http://vger.kernel.org/netconf2006.html
- Next one: Linux Conf Australia, January 2008,Melbourne

- David S. Miller, James Morris , Rusty Russell , Jamal Hadi Salim ,Stephen
Hemminger , Harald Welte, Hideaki YOSHIFUJI, Herbert Xu ,Thomas Graf ,Robert
Olsson ,Arnaldo Carvalho de Melo and others

http://vger.kernel.org/netconf2004.html
http://vger.kernel.org/netconf2005.html
http://vger.kernel.org/netconf2006.html

Links and more Info

11) Policy Routing With Linux - Online Book Edition
- by Matthew G. Marsh (Sams).
- http://www.policyrouting.org/PolicyRoutingBook/

12) THRASH - A dynamic LC-trie and hash data structure:
Robert Olsson Stefan Nilsson, August 2006
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf

13) IPSec howto:
http://www.ipsec-howto.org/t1.html

http://www.policyrouting.org/PolicyRoutingBook/
http://www.csc.kth.se/~snilsson/public/papers/trash/trash.pdf
http://www.ipsec-howto.org/t1.html

Links and more Info

14) Openswan: Building and Integrating Virtual Private
Networks , by Paul Wouters, Ken Bantoft

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
publisher: Packt Publishing.
15) a book including chapters about LVS:

“The Linux Enterprise Cluster- Build a Highly Available Cluster
with Commodity Hardware and Free Software”, By Karl
Kopper.

http://www.nostarch.com/frameset.php?startat=cluster
15) http://www.vyatta.com - Open-Source Networking

http://www.packtpub.com/book/openswan/mid/061205jqdnh2by
http://www.nostarch.com/frameset.php?startat=cluster
http://www.vyatta.com/

Links and more Info

16) Address Resolution Protocol (ARP)

- http://linux-ip.net/html/ether-arp.html
17) ARPWatch — a tool for monitor incoming ARP traffic.

Lawrence Berkeley National Laboratory -
ftp://ftip.ee.lbl.gov/arpwatch.tar.gz.

18) arptables:
http://ebtables.sourceforge.net/download.html

19) TCP/IP lllustrated, Volume 1: The Protocols
By W. Richard Stevens
http://www.informit.com/store/product.aspx?isbn=0201633469

http://linux-ip.net/html/ether-arp.html
ftp://ftp.ee.lbl.gov/arpwatch.tar.gz
http://ebtables.sourceforge.net/download.html

Links and more Info

20) Unix Network Programming, Volume 1: The Sockets
Networking API (3rd Edition) (Addison-Wesley Professional
Computing Series) (Hardcover)

by W. Richard Stevens (Author), Bill Fenner (Author), Andrew M.
Rudoff (Author)

Questions

» Questions ?
e Thank You !

