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Linux Kernel Networking (4)- 
advanced topics

● Note:
● This lecture is a sequel to the following 3 

lectures I gave:

1) Linux Kernel Networking lecture 
– http://www.haifux.org/lectures/172/
– slides:http://www.haifux.org/lectures/172/netLec.pdf

2) Advanced Linux Kernel Networking -  
Neighboring Subsystem and IPSec lecture
– http://www.haifux.org/lectures/180/
– slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf


  

Linux Kernel Networking (4)- 
advanced topics

3) Advanced Linux Kernel Networking - 

     IPv6 in the Linux Kernel lecture
● http://www.haifux.org/lectures/187/

– Slides: http://www.haifux.org/lectures/187/netLec3.pdf

http://www.haifux.org/lectures/187/
http://www.haifux.org/lectures/187/netLec3.pdf
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● Note: we will not deal with security/encryption, 
regulation, fragmentation in the linux wireless 
stack and not deal with tools (NetworkManager, 
kwifimanager,etc). and not with billing (Radius, 
etc).

● You might find help on these topics in two Haifux lectures:

● Wireless management (WiFi (802.11) in GNU/Linux by Ohad 
Lutzky):

– http://www.haifux.org/lectures/138/
● Wireless security (Firewall Piercing, by Alon Altman):

– http://www.haifux.org/lectures/124/
● Note: We will not delve into hardware features.

http://www.haifux.org/lectures/138/
http://www.haifux.org/lectures/124/


  

General

● Wireless networks market grows constantly
● Two items from recent month newspaper: 

(ynet.co.il)
– Over 12,000 wireless room hotels in Israel.

– Over 50,000 wireless networks in Europe.

● In the late nineties there were discussions in 
IEEE committees regarding the 802.11 protocol.

● 1999 : The first spec (about 500 pages).
– (see no 1 in the list of links below).

● 2007: A second spec  (1232 pages) ; and there 
were some amendments since then.



  

SoftMAC and FullMAC

● In 2000-2001, the market became abound with 
laptops with wireless nics. 

● It was important to produce wireless driver and 
wireless stack Linux solutions in time.

● The goal was then, as Jeff Garzik (the previous  
wireless Maintainer) put it: “They just want their 
hardware to work...".

● mac80211  - new Linux softmac layer. 
– formerly called d80211 of Devicescape)

● Current mac80211 maintainer: Johannes Berg 
from sipsolutions.



  

● Mac80211 merged into Kernel mainstream 
(upstream) starting 2.6.22, July 2007.

● Drivers were adjusted to use mac80211 
afterwards.

● Devicescape is a wireless networking company.
– http://devicescape.com/pub/home.do

● Location in the kernel tree: net/mac80211.
● A kernel module named mac80211.ko.



  

● Most wireless drivers were ported to use 
mac80211. 
– There is a little number of exceptions though.

● Libertas (Marvell) does not work with 
mac80211.

● libertas_tf (Marvell) uses thin firmware ; so it 
does use mac80211. 
– libertas_tf supports Access Point and Mesh Point.

– Both are in OLPC project.

● When starting development of a new driver, 
most chances are that it will use mac80211 API.



  

Modes: Infrastructure BSS



  

Classic ESS (Extended Service Set)

ESS = two or more BSSs.



  

● What is an Access Point ?
● Edimax MIMO nMax BR-6504n Router



  

● Linksys WRT54GL 54Mbps Route



  

● NOTE: Infrastructure BSS != IBSS 
– IBSS = Independent BSS. (Ad-Hoc mode)  

● Access Point: A wireless device acting in 
master mode with some hw enhancements and 
a management software (like hostapd).
– A wireless device in master mode cannot scan

(as opposed to other modes).
● Also a wireless device in monitor mode cannot scan.

● Master Mode is one of 7 modes in which a 
wireless card can be configured.



  

● All stations must authenticate and associate 
and  with the Access Point prior to 
communicating.

● Stations sometimes perform scanning prior to 
authentication and association in order to get 
details about the Access Point (like mac 
address, essid, and more).



  

Scanning

● Scanning can be:
– Active (send broadcast Probe request) scanning.

– Passive (Listening for beacons) scanning.

– Some drivers support passive scanning. ( see the 
IEEE80211_CHAN_PASSIVE_SCAN flag).

– Passive scanning is needed in some higher 
802.11A frequency bands,as you're not allowed to 
transmit anything at all until you've heard an AP 
beacon.

● scanning with "iwlist wlan0 scan" is in fact 
sending an IOCTL (SIOCSIWSCAN).



  

Scanning-contd.

● It is handled by ieee80211_ioctl_siwscan().
● This is part of the Wireless-Extensions 

mechanism. (aka WE).
● Also other operations like setting the mode to 

Ad-Hoc or Managed can be done via IOCTLs.  
● The Wireless Extensions module; see: 

net/mac80211/wext.c

● Eventually, the scanning starts by calling 
ieee80211_sta_start_scan() method ,in 
net/mac80211/mlme.c.

● MLME = MAC Layer Management Entity.



  

Scanning-contd.

● Active Scanning is performed by sending Probe 
Requests on all the channels which are 
supported by the station.
– One station in each BSS will respond to a Probe 

Request.

– That station is the one which transmitted the last 
beacon in that BSS.

● In infrastructure BSS, this stations is the Access Point.
● Simply because there are no other stations in BSS which 

send beacons.
● In IBSS, the station which sent the last beacon can 

change during time.



  

Scanning-contd.

● You can also sometimes scan for a specific 
BSS:
– iwlist wlan1 scan essid homeNet.

– Also in this case, a broadcast is sent.

– (sometimes, this will return homeNet1 also and 
homeNet2).



  

Example of scan results

iwlist wlan2 scan
wlan2     Scan completed :

         Cell 01 - Address: 00:16:E3:F0:FB:39

                   ESSID:"SIEMENS-F0FB39"

                   Mode:Master

                   Channel:6

                   Frequency:2.437 GHz (Channel 6)

                   Quality=5/100  Signal level:25/100

                   Encryption key:on

                   IE: Unknown: 000E5349454D454E532D463046423339

                   IE: Unknown: 010882848B962430486C

                   IE: Unknown: 030106

                   IE: Unknown: 2A0100                      



  

                   IE: Unknown: 32040C121860

                   IE: Unknown: DD06001018020000

                   Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s

                             24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s

                             12 Mb/s; 48 Mb/s

                   Extra:tsf=00000063cbf32479

                   Extra: Last beacon: 470ms ago

         Cell 02 - Address: 00:13:46:73:D4:F1

           ESSID:"D-Link"

                   Mode:Master

                   Channel:6

                   Frequency:2.437 GHz (Channel 6)



  

Authentication

● Open-system authentication 
(WLAN_AUTH_OPEN) is the only mandatory 
authentication method required by 802.11.

● The AP does not check the identity of the 
station.

● Authentication Algorithm Identification =  0.
● Authentication frames are management frames.



  

Association

● At a given moment, a station may be 
associated with no more than one AP.

● A Station (“STA”) can select a BSS and 
authenticate and associate to it.

● (In Ad-Hoc : authentication is not defined).



  

Association-contd.

● Trying this:
– iwconfig wlan0 essid AP1 ap macAddress1

– iwconfig wlan0 essid AP2 ap macAddress2

● Will cause first associating to AP1, and then 
disassociating from AP1 and associating to 
AP2.

● AP will not receive any data frames from a 
station before it it is associated with the AP.



  

Association-contd.

● An Access Point which receive an association 
request will check whether the mobile station 
parameters match the Access point parameters.
– These parameters are SSID, Supported Rates and 

capability information. The Access Point also define 
a Listen Interval.

● When a station associates to an Access Point, it 
gets an ASSOCIATION ID (AID) in the range 
1-2007.



  

Association-contd.

● Trying unsuccessfully to associate more than 3 
times results with this message in the kernel 
log:

● “apDeviceName: association with AP apMacAddress timed out” and 
ths state is changed to IEEE80211_STA_MLME_DISABLED.

● Also if does not match securiy requirement, will return 

IEEE80211_STA_MLME_DISABLED.



  

Hostapd

● hostapd is a user space daemon implementing 
access point functionality (and authentication 
servers). It supports Linux and FreeBSD.

● http://hostap.epitest.fi/hostapd/
● Developed by Jouni Malinen.
● hostapd.conf is the configuration file.

● Example of a very simple hostapd.conf file:
interface=wlan0
driver=nl80211
hw_mode=g
channel=1
ssid=homeNet

http://hostap.epitest.fi/hostapd/


  

Hostapd-cont.

● Launching hostapd:
– ./hostapd hostapd.conf

– (add -dd for getting more verbose debug 
messages)

● Certain devices, which support Master Mode, 
can be operated as Access Points by running 
the hostapd daemon.  
● Hostapd implements part of the MLME AP code 

which is not in the kernel 
● and probably will not be in the near future.
● For example: handling association requests which are 

received  from wireless clients.



  

Hostapd-cont.

● Hostapd uses the nl80211 API (netlink socket 
based , as opposed to ioctl based).



  

Hostapd-cont.

● The hostapd starts the device in monitor mode:
drv->monitor_ifidx =

nl80211_create_iface(drv, buf, NL80211_IFTYPE_MONITOR, NULL);

The hostapd opens a raw socket with this device:
drv->monitor_sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

(hostapd/driver_nl80211.c)

The packets which arrive at this socket are handled by the AP.

● Receiving in monitor mode means that a special header 
(RADIOTAP) is added to the received packet.

● The hostapd changes management and control packets.
● The packet is sent by the sendmsg() system call:
● sendmsg(drv->monitor_sock, &msg, flags);



  

Hostapd-cont.

● This means sending directly from the raw 
socket (PF_PACKET) and putting on the 
transmit queue (by dev_queue_xmit()), without 
going through the 80211 stack and without the 
driver).

● When the packet is transmitted, an “INJECTED” 
flags is added. This tells the other side, which 
will receive the packet, to remove the radiotap 
header. (IEEE80211_TX_CTL_INJECTED)



  

Hostapd-cont.

● Hostapd manages:
● Association/Disassociation requests.
● Authentication/deauthentication requests.

● The Hostapd keeps an array of stations; When 
an association request of a new station arrives 
at the AP, a new station is added to this array.



  

Hostapd-cont. 

● There are three types of IEEE80211 packets:
● The type and subtype of the packet are 

represented by the frame control field in the 
802.11 header.
– Management  (IEEE80211_FTYPE_MGMT)

– Each management frame contains information 
elements (IEs). For example, beacons has the ssid 
(network name) ,ESS/IBSS bits (10=AP,01=IBSS), 
and more.

– (WLAN_CAPABILITY_ESS/WLAN_CAPABILITY_IBSS in ieee80211.h.)

– There are 47 types of information elements (IEs) in current 
implementation

– All in /include/linux/ieee80211.h. 



  

– Association and Authentication are management 
packets. 

– Beacons are also management frames. 
– IEEE80211_STYPE_BEACON



  

Hostapd-cont. 

– Control            (IEEE80211_FTYPE_CTL)

–  For example, PSPOLL 
IEEE80211_STYPE_PSPOLL  

● Also ACK, RTS/CTS.

– Data                 (IEEE80211_FTYPE_DATA)
● See: include/linux/ieee80211.h

– The hostapd daemon sends special management packets 
called beacons (Access Points send usually 10 beacons in 
a second; this can be configured (see the router manual 
page at the bottom)).

● The area in which these beacons appear define 
the basic service area.



  

From /net/mac80211/rx.c (with remarks)

 * IEEE 802.11 address fields:
 ToDS FromDS Addr1 Addr2     Addr3  Addr4

  0         0           DA        SA       BSSID n/a    AdHoc

  0         1           DA        BSSID SA       n/a   Infra (From AP)

  1         0           BSSID  SA       DA       n/a   To AP (Infra)

  1         1            RA       TA        DA       SA    WDS (Bridge )



  

My laptop as an access point

● My laptop as an access point: There is an 
Israeli Start Up company which develops free 
access point Windows sw which enables your 
laptop to be an access point.

● http://www.bzeek.com/static/index.html
● Currently it is for Intel PRO/Wireless 3945.
● In the future: Intel PRO/Wireless 4965.

http://www.bzeek.com/static/index.html


  

Power Save in Infrastructure Mode

● Power Save it a hot subject.
● Intel linux Power Save site:

– http://www.lesswatts.org/

– PowerTOP util:
● PowerTOP is a tool that helps you find which software is 

using the most power.

http://www.lesswatts.org/


  

Power Save in Infrastructure Mode-
cont

● Usual case (Infrastructure BSS).

STA1 STA2AP



  

● Mobile devices are usually battery powered 
most of the time.

● A station may be in one of two different modes:
– Awake (fully powered)

– Asleep (also termed “dozed” in the specs) 

● Access points never enters power save mode 
and does not transmit Null packets.

● In power save mode, the station is not able to 
transmit or receive and consumes very low 
power.



  

● Until recently, power management worked only 
with devices which handled power save in 
firmware.

● From time to time, a station enters power save 
mode.

● This is done by:
–  firmware, or

–  by using mac80211 API 
● Dynamic power management patches that were recently 

sent by Kalle Valo (Nokia).



  

● How do we initiate power save? 
● iwconfig wlan0 power timeout 5

– Sets the timeout to 5 seconds.

● Note: this can be done only with the beta 
version of Wireless Tools (version 30-pre7 
(beta) ):

● http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html 



  

● In case the firmware has support for power 
save, drivers can disable this feature by setting 
IEEE80211_HW_NO_STACK_DYNAMIC_PS 
flag in the driver configuration.

● The Access Point is notified about it by a null frame 
which is sent from the client (which calls 
ieee80211_send_nullfunc() ). The PM bit is set in this 
packet (Power Management).



  

● When STA2 is in power saving mode:
● AP has two buffers: (a doubly linked list of 

sk_buff structures, sk_buff_head).
– For unicast frames (ps_tx_buf in sta; one queue for 

each station).

– For multicast/broadcast frames. (ps_bc_buf ,one for 
AP).

STA1 STA2AP



  

● Each AP has an array of its associated stations inside 
(sta_info objects). Each one has ps_tx_buf queue inside, 
(for unicasts), and ps_bc_buf (for multicast/broadcasts)

STA_INFO 

ps_tx_buf

AP

ps_bc_buf



  

● The size of ps_tx_buf and of ps_bc_buf is 128 packets 

● #define STA_MAX_TX_BUFFER 128 in 
net/mac80211/sta_info.h

● #define AP_MAX_BC_BUFFER 128 in 
net/mac80211/ieee80211_i.h

● Adding to the queue: done by skb_queue_tail().
● There is however, a common counter 

(total_ps_buffered) which sums both buffered 
unicasts and multicasts.

● When a station enters PS mode it turns off its 
RF. From time to time it turns the RF on, but 
only for receiving beacons.



  

● When buffering in AP, every packet (unicast and 
multicast) is saved in the corresponding key. 

● The only exception is when strict ordering 
between unicast and multicast is enforced. This 
is a service which MAC layer supply. However, 
it is rarely in use.

● From net/mac80211/tx.c: 
ieee80211_tx_h_multicast_ps_buf() {

...

/* no buffering for ordered frames */

if (ieee80211_has_order(hdr->frame_control))

  return TX_CONTINUE;



  

● The AP sends a TIM (Traffic Indication Map) 
with each beacon.

● Beacons are sent periodically from the AP.
● TIM[i]=1 => The AP has buffered traffic for a 

station with Association ID=i.
– In fact, a partial virtual bitmap is sent – which is a 

smaller data structure in most cases.

● The STA sends a PS-POLL packet  (Power 
Saving Poll) to tell the AP that it is awake.

● AP sends the buffered frame.



  

pspoll diagram



  

IBSS Mode

● IBSS – without an access point. 



  

IBSS Mode - contd

● IBSS network is often formed without pre-
planning, for only as long as the LAN is needed.

● This type of operation is often referred to as an 
Ad Hoc network.
– Also sometimes called “Peer To Peer” network.



  

● Creating Ad-Hoc network:
– iwconfig wlan0 mode ad-hoc

– (note: if the nic is running, you should run before 
this: ifconfig wlan0 down)

– iwconfig wlan0 essid myEssid

– The essid has to be distributed manually (or

   otherwise) to everyone who wishes to connect

   to the Ad-Hoc network.

● The BSSID is a random MAC address.
– (in fact, 46 bits of it are random).



  

● “iwconfig wlan0 essid myEssid” triggers ibss 
creation by calling ieee80211_sta_create_ibss()
– net/mac80211/mlme.c



  

● Joining an IBSS:
– All members of the IBSS participate in beacon 

generation.

– The members are synchronized (TSF).

– The beacon interval within an IBSS is established 
by the STA that instantiates the IBSS.

– ieee80211_sta_create_ibss()  (mlme.c)

– The bssid of the ibss is a random address (based on mixing 
get_random_bytes() and MAC address).



  

Mesh Mode (80211s)

Full Mesh:In the full mesh topology, each 
node is connected directly to each of the 
others. 



  

Mesh Mode (80211s)

Partial Mesh:nodes are connected to only 
some, not all.



  

802.11s (Mesh)

● 802.11s started as a Study Group of IEEE 
802.11 in September 2003, and became a TG 
(Task Group) in 2004. (name: TGs)

● In 2006, two proposals, out of 15, (the "SEE-
Mesh" and "Wi-Mesh" proposals) were merged 
into one. This is draft D0.01.

● Wireless Mesh Networks are also called WMN.
● Wireless mesh networks forward data packets 

over multiple wireless hops. Each mesh node 
acts as relay point/router for other mesh nodes.



  

● In 2.6.26, the network stack added support for 
the draft of wireless mesh networking (802.11s), 
thanks to the open80211s project (
http://www.open80211s.org/).
– There is still no final spec.

– There are currently five drivers in linux with support 
to mesh networking (ath5k,b43,libertas_tf,p54, 
zd1211rw), and one is under development (rt2x00).

http://www.open80211s.org/


  

● Open80211.s
● Goal: To create the first open implementation of 

802.11s.
– Sponsors:

●  OLPC project.

● Cozybit (http://www.cozybit.com/), the company that 
developed the mesh software on the OLPC Laptop.

– Luis Carlos Cobo and Javier Cardona (both from Cozybit) 
developed the Linux mac80211 mesh code.

● Nortel



  

● 80211.s defines a default routing protocol called 
HWMP  (Hybrid Wireless Mesh Protocol)

● Based on: Ad Hoc Demand Distance Vector 
(AODV) routing (C. Perkins); rfc3561.

● The HWMP protocol works with layer 2 (Mac 
addresses).

● The 80211 header was extended:

– A ttl field was added to avoid loops.



  

● The current implementation uses on demand 
path selection.

● The draft also talks about proactive path 
selection.
– This is not implemented yet in the Linux Kernel.

–  Uses Root Announcement (RANN) messages and 
Mesh Portal as a root.



  

● As with IPV4 static routes, you can force a 
specific next hop for a mesh station 
(MESH_PATH_FIXED flag)
– (mesh_path_fix_nexthop() in mesh_pathtbl.c)

● Every station is called an MP. (Mesh Point)

● MPP is a Mesh Portal. (For example, when an MP is used to 
connect to external network, like the Internet).

● Each station holds a routing table (struct mesh_table) – helps to 
decide which route to take.



  

● In the initial state, when a packet is sent to another station, 
there is first a lookup in the mesh table; there is no hit, so a 
PREQ (Path Request) is sent as a broadcast.

– When the PREQ is received on all stations except the final 
destination, it is forwarded.

– When the PREQ is received on the final station, a PREP is 
sent (Path Reply).

– If there is some failure on the way, a PERR is sent.(Path 
Error). 

● Handled by mesh_path_error_tx(), mesh_hwmp.c
● The route take into consideration an airtime metric

– Calculated in airtime_link_metric_get() (based on rate and other hw 
parameters).

● POWER SAVING in the MESH spec is optional.



  

● Advantage:

– Rapid deployment.

– Minimal configuration; inexpensive.

– Easy to deploy in hard-to-wire environments.
● Disadvantage: 

– Many broadcasts limit network performance
● You can set a wireless device to work in mesh mode only with 

the iw command (You cannot perform this with the wireless 
tools).

● Example: setting a wireless nic to work in mesh mode:

– iw dev wlan1 interface add mesh type mp mesh_id 1

– (type = mp => Mesh Point)



  

802.11 Physical Modes 

● 802.11 (WiFi) is a set of standards for wireless 
networking, which were defined in 1997 but 
started to become popular in the market  
around 2001.

● 802.11a (1999) at 5 GHz, 54MBit maximum 
speed; range about 30m.

● 802.11b  (1999) at 2.4GHz, 11Mbit maximum 
speed, range about 30m.

● 802.11g (2003) at 2.4GHz, 54Mbit maximum 
speed, range about 30m.



  

● 802.11n (2008) at 2.4GHz/5GHz, 200 Mbit 
(typical), range about 50m.

● is planned to support up to about 540Mbit/ 600 
Mbit. 

● Improves the previous 802.11 standards by 
adding multiple-input multiple-output (MIMO) 
– multiple antennas.

– High Throughput (HT).

– Use packet aggregation
● The ability to send several packets together at one time.



  

● Still is considered a proposal.
– Expected to be approved only in December 2009 or 

later.

● iwlagn and ath9k are the only drivers that 
support 80211.n in the Linux kernel at the 
moment.

● Tip: how can I know whether my wireless nic 
supports 80211.n?
– Run: iwconfig 

– You should see : "IEEE 802.11abgn" or somesuch.



  

Appendix: mac80211 
implementation details 

● BSSID = Basic Service Set Identification.
● Each BSS has an BSSID.
● BSSID is an 48 bit number (like MAC address).

– This avoids getting broadcasts from other networks 
which may be physically overlapping.

– In infrastructure BSS, the BSSID is the MAC 
address of the Access Point which created the BSS.

– In IBSS, the BSSID is generated from calling a 
random function (generating 46 random bits; the 
other 2 are fixed).



  

Modes of operation

● A wireless interface always operates in one of 
the following modes:

● Infrastructure mode: with an AccessPoint (AP) 
– The access point hold a list of associated stations.

– also called managed)

●  IBSS (Independent BSS,Ad-Hoc) mode
– When using ad-hoc, an access point is not needed.

● Monitor mode
● WDS (Wireless Distribution System)



  

Modes of operation - contd.

– Wireless Distribution System (WDS) - allows access 
points to talk to other access points. 

● Mesh



  

see: include/linux/nl80211.h:

enum nl80211_iftype {

  NL80211_IFTYPE_UNSPECIFIED,

  NL80211_IFTYPE_ADHOC,

  NL80211_IFTYPE_STATION,

  NL80211_IFTYPE_AP,

  NL80211_IFTYPE_AP_VLAN,

  NL80211_IFTYPE_WDS,

  NL80211_IFTYPE_MONITOR,

  NL80211_IFTYPE_MESH_POINT,

}



  

cfg80211 and nl80211

● Wireless-Extensions has a new replacement; 
● It is cfg80211 and nl80211 (message-based 

mechanism, using netlink interface).
● iw uses the nl80211 interface.

– You can compare it the the old ioctl-based net-tools 
versus the new rtnetlink IPROUTE2 set of tools.

– You cannot set master mode with iw.

– You cannot change the channel with iw.



  

● Wireless git trees:
● Wireless-testing

● Was started on February 14, 2008 by John Linville.

– primary development target.

– the bleeding edge Linux wireless developments.
● wireless-next-2.6

● Wireless-2.6

● Daily compat-wireless tar ball in:

● http://www.orbit-lab.org/kernel/compat-wireless-2.6/

● The compat-wireless tar ball includes only part of the kernel

– (Essentially it includes wireless drivers and wireless stack)

http://www.orbit-lab.org/kernel/compat-wireless-2.6/


  

● Fedora kernels are usually up-to-date with wireless-testing git 
tree.

● There is usually at least one pull request (or more)  in a week, 
to the netdev mailing list (main Linux kernel networking mailing 
list).

● The Maintainer of the wireless (802.11) in the Linux kernel is 
John Linville (RedHat), starting from January 2006. 



  

● For helping in delving into the mac80211 code  little help.

● Important data structures:

● struct ieee80211_hw – represents hardware information and 

state (include/net/mac80211.h).

– Important member: void *priv (pointer to private area).

– Most drivers define a struct for this private area , like 
lbtf_private (Marvell) or iwl_priv (iwlwifi of Intel) or 
mac80211_hwsim_data in mac80211_hwsim.

– Every driver allocates it by ieee80211_alloc_hw()

– A pointer to ieee80211_ops (see later) is passed as a 
parameter to ieee80211_alloc_hw().

– Every driver  calls ieee80211_register_hw() to create wlan0 
and wmaster0 and for various initializations.



  

● You set the machine mode prior to calling  
ieee80211_register_hw() by assigning flags for the 
interface_modes flags of wiphy member 

– wiphy itself is a member of ieee80211_hw structure.

– For example, 

hw->wiphy->interface_modes =

  BIT(NL80211_IFTYPE_STATION) |

  BIT(NL80211_IFTYPE_AP);
● This sets the machine to be in Access Point mode.



  

● struct ieee80211_if_ap – represents an access point. (see 
ieee80211_i.h)

● Power saving members of ieee80211_if_ap:

– ps_bc_buf (multicast/broadcast buffer).

– num_sta_ps (number of stations in PS mode).



  

● struct ieee80211_ops – The drivers use its members.  (include/net/
mac80211.h).

● For example, config (to change a channel) or config_interface

to change bssid.

● Some drivers upload firmware at the start() method, like 
lbtf_op_start() in libetras_tf driver or zd_op_start() (which calls 
zd_op_start() to upload firmware zd1211rw

● All methods of this struct get a pointer to struct ieee80211_hw 
as a first parameter.

– There are 24 methods in this struct.

– Seven of them are mandatory: 
tx,start,stop,add_interface,remove_interface,config and 
configure_filter.

– (If anyone of them is missing, we end in BUG_ON())



  

● Receiving a packet is done by calling 
ieee80211_rx_irqsafe() from the low level 
driver. Eventually, the packet is handled by  
__ieee80211_rx():

●  __ieee80211_rx()(struct ieee80211_hw *hw,                     
             struct sk_buff *skb,                                  
                struct ieee80211_rx_status *status);

● ieee80211_rx_irqsafe() can be called from interrupt 
context.

– There is only one more mac80211 method  which can 
be called from interrupt context:

– ieee80211_tx_status_irqsafe()



  

● Data frames 
– Addr1 – destination (receiver     MAC address).

– Addr2 – source        (transmitter MAC address).

– Addr3  - DS info

– Addr4 – for WDS.

● Management frames 
– Addr1 – destination (receiver     MAC address).

– Addr2 – source        (transmitter MAC address).

– Addr3  - DS info



  

Firmware

● Firmware:
– Most wireless drivers load firmware in the probe 

method (by calling request_firmware())

– Usually the firmware is not open source.

– Open FirmWare for WiFi networks site:

– http://www.ing.unibs.it/openfwwf/
● Written in assembler.

– B43 firmware will be replaced by open source  
firmware.

–  ath5k/athk9k driver doesn't load firmware. (its fw is 
burnt into an onchip ROM)

http://www.ing.unibs.it/openfwwf/


  

Wireless Future trends (WiMax)

● WiMax - IEEE 802.16.
● There are already laptops which are sold with 
● WiMax chips (Toshiba, Lenovo).
● WiMax and Linux:
● http://linuxwimax.org/
● Inaky Perez-Gonzalez from Intel

– (formerly a kernel USB developer)

● Location in the kernel tree: drivers/net/wimax.

http://linuxwimax.org/


  

Wireless Future trends (WiMax) - 
contd

● Two parts:
● Kernel module driver
● User space management stack, WIMAX 

Network Service. 
● A request to merge linux-wimax GIT tree with 

the netdev GIT tree was sent in 26.11.08 
● http://www.spinics.net/lists/netdev/msg81902.html

● There is also an initiative from Nokia for a WiMax stack for 
Linux.

http://www.spinics.net/lists/netdev/msg81902.html


  

Tips

● How can I know if my wireless nic was 
configured to support power management ? 
– Look in iwconfig for “Power Management” entry.

● How do I know if my USB nic has support in 
Linux?
– http://www.qbik.ch/usb/devices/

● How do I know which Wireless Extensions does 
my kernel use?

● Grep for #define WIRELESS_EXT in 
include/linux/wireless.h in your kernel tree.

http://www.qbik.ch/usb/devices/


  

● How can I know the channel number from a 
sniff? 
– Look at the radiotap header in the sniffer output; 

channel frequency translates to a channel number 
(1 to 1.)

– See also Table 15-7—DSSS PHY frequency 
channel plan , in the 2007 80211 

– Often, the channel number appears in square 
brackets. Like: 

– channel frequency 2437 [BG 6]

– BG stands for 802.11B/802.11G, respectively



  

● Channel 14 for example would show as B, 
because you're not allowed to transmit 802.11G 
on it. 

● Israel regdomain:
– http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL

– IL is in the range 1-13. 

– With US configuration, only channel 1 to 11 are selectable. Not 12,13.

– Many Aps ares shipped on a US configuration.

http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL


  

● What is the MAC address of my nic?
– cat /sys/class/ieee80211/phy*/macaddress

–

– Common Filters for wireshark sniffer:
Management Frames wlan.fc.type eq 0

Control Frames wlan.fc.type eq 1

Data Frames wlan.fc.type eq 2

Association Request wlan.fc.type_subtype eq 0

Association response wlan.fc.type_subtype eq 1

Reassociation Request wlan.fc.type_subtype eq 2

Reassociation Response wlan.fc.type_subtype eq 3

Probe Request wlan.fc.type_subtype eq 4



  

Probe Response wlan.fc.type_subtype eq 5

Beacon wlan.fc.type_subtype eq 8

Announcement Traffic Indication Map (ATIM) wlan.fc.type_subtype eq 9

Disassociate wlan.fc.type_subtype eq 10

Authentication wlan.fc.type_subtype eq 11

Deauthentication wlan.fc.type_subtype eq 12

Action Frames wlan.fc.type_subtype eq 13

Block Acknowledgement (ACK) Request wlan.fc.type_subtype eq 24

Block ACK wlan.fc.type_subtype eq 25

Power-Save Poll wlan.fc.type_subtype eq 26

Request to Send wlan.fc.type_subtype eq 27



  

Sniffing a WLAN

● You could sniff with wireshark 
● Sometime you can't put the wireless interface to 

promiscuous mode (or it is not enough). You 
should set the interface to work in monitor 
mode (For example: iwconfig wlan0 mode 
monitior).

● If you want to capture traffic on networks other 
than the one with which you're associated, you 
will have tohave to  capture in monitor mode. 



  

Sniffing a WLAN - contd.

● See the following wireshark wiki page, talking 
about various wireless cards and sniffing in 
Linux;

● WLAN (IEEE 802.11) capture setup: 
– http://wiki.wireshark.org/CaptureSetup/WLAN#head-bb8373ef4903fe9da2b8375331726541fb1ad32d

● Using a filter from command line:
– tshark -R wlan -i wlan0

–  tethereal  -R wlan -i wlan0 -w wlan.eth

– You will see this message in the kernel log:
● “device wlan0 entered promiscuous mode”

http://wiki.wireshark.org/CaptureSetup/WLAN#head-bb8373ef4903fe9da2b8375331726541fb1ad32d


  

Sniffing a WLAN - contd.

● Sometimes you will have to set a different 
channel than the default one in order to see 
beacon frames (try channels 1,6,11)
– iwconfig wlan1 channel 11

– Tip: usefull wireshark display filter:
● For showing only beacons:
● wlan.fc.type_subtype eq 8

– For tshark command line:
● tshark -R "wlan.fc.type_subtype eq 8" -i wlan0
● (this will sniff for beacons).



  

Glossary

● AMPDU=Application Message Protocol Data 
Unit.

● CRDA = Central Regulatory Domain Agent
● CSMA/CA = Carrier Sense Multiple Access with 

Collision Avoidance
● CSMA/CD Carrier Sense Multiple Access with 

Collision Detection
● DS = Distribution System
● EAP  = The Extensible Authentication Protocol
● ERP     = extended rate PHY 



  

● HWMP = Hybrid Wireless Mesh Protocol 
● MPDU = MAC Protocol Data Unit
● MIMO  = Multiple-Input/Multiple-Output
● PSAP  = Power Saving Access Points
● PS       = Power Saving.
● RSSI   = Receive signal strength indicator.
● TIM    = Traffic Indication Map 
● WPA  = Wi-Fi Protected Access 
● WME = Wireless Multimedia Extensions



  



  

Links

● 1) IEEE 80211 specs:
– http://standards.ieee.org/getieee802/802.11.html

● 2) Linux wireless status June - 2008
– http://www.kernel.org/pub/linux/kernel/people/mcgro

f/presentations/linux-wireless-status.pdf

● 3) official Linux Wireless wiki  hosted by 
Johannes Berg.
–  http://wireless.kernel.org/ 

– or http://linuxwireless.org/

http://standards.ieee.org/getieee802/802.11.html


  

● 4) A book:
– 802.11 Wireless Networks: The Definitive Guide

– by Matthew Gast

– Publisher: O'Reilly
● 5) Wireless Sniffing with Wireshark - Chapter 6 of Syngress 

Wireshark and Ethereal Network Protocol Analyzer Toolkit.

● 6) http://www.lesswatts.org/

– Saving power with Linux (an Intel site)

http://www.lesswatts.org/


  

● 7) A book: Wireless Mesh Networking:   
Architectures, Protocols And Standards

 by Yan Zhang, Jijun Luo, Honglin Hu (Hardcover 
– 2006)

Auerbach Publications

8) http://www.radiotap.org/



  

Images

● Beacon wireshark filter:
● wlan.fc.type_subtype eq 8

– shows only beacons.



  

Beacon filter – sniff 



  

Beacon interval and DTIM period in 
edimax router (BR-6504N) (From 

the manual)



  

Thank You !
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