

Linux Wireless -
Linux Kernel Networking (4)-

advanced topics

Rami Rosen
ramirose@gmail.com
 Haifux, March 2009
www.haifux.org

mailto:ramirose@gmail.com

Linux Kernel Networking (4)-
advanced topics

● Note:
● This lecture is a sequel to the following 3

lectures I gave:

1) Linux Kernel Networking lecture
– http://www.haifux.org/lectures/172/
– slides:http://www.haifux.org/lectures/172/netLec.pdf

2) Advanced Linux Kernel Networking -
Neighboring Subsystem and IPSec lecture
– http://www.haifux.org/lectures/180/
– slides:http://www.haifux.org/lectures/180/netLec2.pdf

http://www.haifux.org/lectures/172/
http://www.haifux.org/lectures/172/netLec.pdf
http://www.haifux.org/lectures/180/
http://www.haifux.org/lectures/180/netLec2.pdf

Linux Kernel Networking (4)-
advanced topics

3) Advanced Linux Kernel Networking -

 IPv6 in the Linux Kernel lecture
● http://www.haifux.org/lectures/187/

– Slides: http://www.haifux.org/lectures/187/netLec3.pdf

http://www.haifux.org/lectures/187/
http://www.haifux.org/lectures/187/netLec3.pdf

Contents:

● General.
– IEEE80211 specs.
– SoftMAC and FullMAC; mac80211.

● Modes: (802.11 Topologies)
– Infrastructure mode.

● Association.
● Scanning.
● Hostapd
● Power save in Infrastructure mode.

– IBSS (Ad Hoc mode).

– Mesh mode (80211s).

● 802.11 Physical Modes.
● Appendix: mac80211­ implementation details.
● Tips.
● Glossary.
● Links.

● Images
● Beacon filter – Wireshark sniff.
● edimax router user manual page (BR-6504N).

● Note: we will not deal with security/encryption,
regulation, fragmentation in the linux wireless
stack and not deal with tools (NetworkManager,
kwifimanager,etc). and not with billing (Radius,
etc).

● You might find help on these topics in two Haifux lectures:

● Wireless management (WiFi (802.11) in GNU/Linux by Ohad
Lutzky):

– http://www.haifux.org/lectures/138/
● Wireless security (Firewall Piercing, by Alon Altman):

– http://www.haifux.org/lectures/124/
● Note: We will not delve into hardware features.

http://www.haifux.org/lectures/138/
http://www.haifux.org/lectures/124/

General

● Wireless networks market grows constantly
● Two items from recent month newspaper:

(ynet.co.il)
– Over 12,000 wireless room hotels in Israel.

– Over 50,000 wireless networks in Europe.

● In the late nineties there were discussions in
IEEE committees regarding the 802.11 protocol.

● 1999 : The first spec (about 500 pages).
– (see no 1 in the list of links below).

● 2007: A second spec (1232 pages) ; and there
were some amendments since then.

SoftMAC and FullMAC

● In 2000-2001, the market became abound with
laptops with wireless nics.

● It was important to produce wireless driver and
wireless stack Linux solutions in time.

● The goal was then, as Jeff Garzik (the previous
wireless Maintainer) put it: “They just want their
hardware to work...".

● mac80211 - new Linux softmac layer.
– formerly called d80211 of Devicescape)

● Current mac80211 maintainer: Johannes Berg
from sipsolutions.

● Mac80211 merged into Kernel mainstream
(upstream) starting 2.6.22, July 2007.

● Drivers were adjusted to use mac80211
afterwards.

● Devicescape is a wireless networking company.
– http://devicescape.com/pub/home.do

● Location in the kernel tree: net/mac80211.
● A kernel module named mac80211.ko.

● Most wireless drivers were ported to use
mac80211.
– There is a little number of exceptions though.

● Libertas (Marvell) does not work with
mac80211.

● libertas_tf (Marvell) uses thin firmware ; so it
does use mac80211.
– libertas_tf supports Access Point and Mesh Point.

– Both are in OLPC project.

● When starting development of a new driver,
most chances are that it will use mac80211 API.

Modes: Infrastructure BSS

Classic ESS (Extended Service Set)

ESS = two or more BSSs.

● What is an Access Point ?
● Edimax MIMO nMax BR-6504n Router

● Linksys WRT54GL 54Mbps Route

● NOTE: Infrastructure BSS != IBSS
– IBSS = Independent BSS. (Ad-Hoc mode)

● Access Point: A wireless device acting in
master mode with some hw enhancements and
a management software (like hostapd).
– A wireless device in master mode cannot scan

(as opposed to other modes).
● Also a wireless device in monitor mode cannot scan.

● Master Mode is one of 7 modes in which a
wireless card can be configured.

● All stations must authenticate and associate
and with the Access Point prior to
communicating.

● Stations sometimes perform scanning prior to
authentication and association in order to get
details about the Access Point (like mac
address, essid, and more).

Scanning

● Scanning can be:
– Active (send broadcast Probe request) scanning.

– Passive (Listening for beacons) scanning.

– Some drivers support passive scanning. (see the
IEEE80211_CHAN_PASSIVE_SCAN flag).

– Passive scanning is needed in some higher
802.11A frequency bands,as you're not allowed to
transmit anything at all until you've heard an AP
beacon.

● scanning with "iwlist wlan0 scan" is in fact
sending an IOCTL (SIOCSIWSCAN).

Scanning-contd.

● It is handled by ieee80211_ioctl_siwscan().
● This is part of the Wireless-Extensions

mechanism. (aka WE).
● Also other operations like setting the mode to

Ad-Hoc or Managed can be done via IOCTLs.
● The Wireless Extensions module; see:

net/mac80211/wext.c

● Eventually, the scanning starts by calling
ieee80211_sta_start_scan() method ,in
net/mac80211/mlme.c.

● MLME = MAC Layer Management Entity.

Scanning-contd.

● Active Scanning is performed by sending Probe
Requests on all the channels which are
supported by the station.
– One station in each BSS will respond to a Probe

Request.

– That station is the one which transmitted the last
beacon in that BSS.

● In infrastructure BSS, this stations is the Access Point.
● Simply because there are no other stations in BSS which

send beacons.
● In IBSS, the station which sent the last beacon can

change during time.

Scanning-contd.

● You can also sometimes scan for a specific
BSS:
– iwlist wlan1 scan essid homeNet.

– Also in this case, a broadcast is sent.

– (sometimes, this will return homeNet1 also and
homeNet2).

Example of scan results

iwlist wlan2 scan
wlan2 Scan completed :

 Cell 01 - Address: 00:16:E3:F0:FB:39

 ESSID:"SIEMENS-F0FB39"

 Mode:Master

 Channel:6

 Frequency:2.437 GHz (Channel 6)

 Quality=5/100 Signal level:25/100

 Encryption key:on

 IE: Unknown: 000E5349454D454E532D463046423339

 IE: Unknown: 010882848B962430486C

 IE: Unknown: 030106

 IE: Unknown: 2A0100

 IE: Unknown: 32040C121860

 IE: Unknown: DD06001018020000

 Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s; 18 Mb/s

 24 Mb/s; 36 Mb/s; 54 Mb/s; 6 Mb/s; 9 Mb/s

 12 Mb/s; 48 Mb/s

 Extra:tsf=00000063cbf32479

 Extra: Last beacon: 470ms ago

 Cell 02 - Address: 00:13:46:73:D4:F1

 ESSID:"D-Link"

 Mode:Master

 Channel:6

 Frequency:2.437 GHz (Channel 6)

Authentication

● Open-system authentication
(WLAN_AUTH_OPEN) is the only mandatory
authentication method required by 802.11.

● The AP does not check the identity of the
station.

● Authentication Algorithm Identification = 0.
● Authentication frames are management frames.

Association

● At a given moment, a station may be
associated with no more than one AP.

● A Station (“STA”) can select a BSS and
authenticate and associate to it.

● (In Ad-Hoc : authentication is not defined).

Association-contd.

● Trying this:
– iwconfig wlan0 essid AP1 ap macAddress1

– iwconfig wlan0 essid AP2 ap macAddress2

● Will cause first associating to AP1, and then
disassociating from AP1 and associating to
AP2.

● AP will not receive any data frames from a
station before it it is associated with the AP.

Association-contd.

● An Access Point which receive an association
request will check whether the mobile station
parameters match the Access point parameters.
– These parameters are SSID, Supported Rates and

capability information. The Access Point also define
a Listen Interval.

● When a station associates to an Access Point, it
gets an ASSOCIATION ID (AID) in the range
1-2007.

Association-contd.

● Trying unsuccessfully to associate more than 3
times results with this message in the kernel
log:

● “apDeviceName: association with AP apMacAddress timed out” and
ths state is changed to IEEE80211_STA_MLME_DISABLED.

● Also if does not match securiy requirement, will return

IEEE80211_STA_MLME_DISABLED.

Hostapd

● hostapd is a user space daemon implementing
access point functionality (and authentication
servers). It supports Linux and FreeBSD.

● http://hostap.epitest.fi/hostapd/
● Developed by Jouni Malinen.
● hostapd.conf is the configuration file.

● Example of a very simple hostapd.conf file:
interface=wlan0
driver=nl80211
hw_mode=g
channel=1
ssid=homeNet

http://hostap.epitest.fi/hostapd/

Hostapd-cont.

● Launching hostapd:
– ./hostapd hostapd.conf

– (add -dd for getting more verbose debug
messages)

● Certain devices, which support Master Mode,
can be operated as Access Points by running
the hostapd daemon.
● Hostapd implements part of the MLME AP code

which is not in the kernel
● and probably will not be in the near future.
● For example: handling association requests which are

received from wireless clients.

Hostapd-cont.

● Hostapd uses the nl80211 API (netlink socket
based , as opposed to ioctl based).

Hostapd-cont.

● The hostapd starts the device in monitor mode:
drv->monitor_ifidx =

nl80211_create_iface(drv, buf, NL80211_IFTYPE_MONITOR, NULL);

The hostapd opens a raw socket with this device:
drv->monitor_sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));

(hostapd/driver_nl80211.c)

The packets which arrive at this socket are handled by the AP.

● Receiving in monitor mode means that a special header
(RADIOTAP) is added to the received packet.

● The hostapd changes management and control packets.
● The packet is sent by the sendmsg() system call:
● sendmsg(drv->monitor_sock, &msg, flags);

Hostapd-cont.

● This means sending directly from the raw
socket (PF_PACKET) and putting on the
transmit queue (by dev_queue_xmit()), without
going through the 80211 stack and without the
driver).

● When the packet is transmitted, an “INJECTED”
flags is added. This tells the other side, which
will receive the packet, to remove the radiotap
header. (IEEE80211_TX_CTL_INJECTED)

Hostapd-cont.

● Hostapd manages:
● Association/Disassociation requests.
● Authentication/deauthentication requests.

● The Hostapd keeps an array of stations; When
an association request of a new station arrives
at the AP, a new station is added to this array.

Hostapd-cont.

● There are three types of IEEE80211 packets:
● The type and subtype of the packet are

represented by the frame control field in the
802.11 header.
– Management (IEEE80211_FTYPE_MGMT)

– Each management frame contains information
elements (IEs). For example, beacons has the ssid
(network name) ,ESS/IBSS bits (10=AP,01=IBSS),
and more.

– (WLAN_CAPABILITY_ESS/WLAN_CAPABILITY_IBSS in ieee80211.h.)

– There are 47 types of information elements (IEs) in current
implementation

– All in /include/linux/ieee80211.h.

– Association and Authentication are management
packets.

– Beacons are also management frames.
– IEEE80211_STYPE_BEACON

Hostapd-cont.

– Control (IEEE80211_FTYPE_CTL)

– For example, PSPOLL
IEEE80211_STYPE_PSPOLL

● Also ACK, RTS/CTS.

– Data (IEEE80211_FTYPE_DATA)
● See: include/linux/ieee80211.h

– The hostapd daemon sends special management packets
called beacons (Access Points send usually 10 beacons in
a second; this can be configured (see the router manual
page at the bottom)).

● The area in which these beacons appear define
the basic service area.

From /net/mac80211/rx.c (with remarks)

 * IEEE 802.11 address fields:
 ToDS FromDS Addr1 Addr2 Addr3 Addr4

 0 0 DA SA BSSID n/a AdHoc

 0 1 DA BSSID SA n/a Infra (From AP)

 1 0 BSSID SA DA n/a To AP (Infra)

 1 1 RA TA DA SA WDS (Bridge)

My laptop as an access point

● My laptop as an access point: There is an
Israeli Start Up company which develops free
access point Windows sw which enables your
laptop to be an access point.

● http://www.bzeek.com/static/index.html
● Currently it is for Intel PRO/Wireless 3945.
● In the future: Intel PRO/Wireless 4965.

http://www.bzeek.com/static/index.html

Power Save in Infrastructure Mode

● Power Save it a hot subject.
● Intel linux Power Save site:

– http://www.lesswatts.org/

– PowerTOP util:
● PowerTOP is a tool that helps you find which software is

using the most power.

http://www.lesswatts.org/

Power Save in Infrastructure Mode-
cont

● Usual case (Infrastructure BSS).

STA1 STA2AP

● Mobile devices are usually battery powered
most of the time.

● A station may be in one of two different modes:
– Awake (fully powered)

– Asleep (also termed “dozed” in the specs)

● Access points never enters power save mode
and does not transmit Null packets.

● In power save mode, the station is not able to
transmit or receive and consumes very low
power.

● Until recently, power management worked only
with devices which handled power save in
firmware.

● From time to time, a station enters power save
mode.

● This is done by:
– firmware, or

– by using mac80211 API
● Dynamic power management patches that were recently

sent by Kalle Valo (Nokia).

● How do we initiate power save?
● iwconfig wlan0 power timeout 5

– Sets the timeout to 5 seconds.

● Note: this can be done only with the beta
version of Wireless Tools (version 30-pre7
(beta)):

● http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html

● In case the firmware has support for power
save, drivers can disable this feature by setting
IEEE80211_HW_NO_STACK_DYNAMIC_PS
flag in the driver configuration.

● The Access Point is notified about it by a null frame
which is sent from the client (which calls
ieee80211_send_nullfunc()). The PM bit is set in this
packet (Power Management).

● When STA2 is in power saving mode:
● AP has two buffers: (a doubly linked list of

sk_buff structures, sk_buff_head).
– For unicast frames (ps_tx_buf in sta; one queue for

each station).

– For multicast/broadcast frames. (ps_bc_buf ,one for
AP).

STA1 STA2AP

● Each AP has an array of its associated stations inside
(sta_info objects). Each one has ps_tx_buf queue inside,
(for unicasts), and ps_bc_buf (for multicast/broadcasts)

STA_INFO

ps_tx_buf

AP

ps_bc_buf

● The size of ps_tx_buf and of ps_bc_buf is 128 packets

● #define STA_MAX_TX_BUFFER 128 in
net/mac80211/sta_info.h

● #define AP_MAX_BC_BUFFER 128 in
net/mac80211/ieee80211_i.h

● Adding to the queue: done by skb_queue_tail().
● There is however, a common counter

(total_ps_buffered) which sums both buffered
unicasts and multicasts.

● When a station enters PS mode it turns off its
RF. From time to time it turns the RF on, but
only for receiving beacons.

● When buffering in AP, every packet (unicast and
multicast) is saved in the corresponding key.

● The only exception is when strict ordering
between unicast and multicast is enforced. This
is a service which MAC layer supply. However,
it is rarely in use.

● From net/mac80211/tx.c:
ieee80211_tx_h_multicast_ps_buf() {

...

/* no buffering for ordered frames */

if (ieee80211_has_order(hdr->frame_control))

 return TX_CONTINUE;

● The AP sends a TIM (Traffic Indication Map)
with each beacon.

● Beacons are sent periodically from the AP.
● TIM[i]=1 => The AP has buffered traffic for a

station with Association ID=i.
– In fact, a partial virtual bitmap is sent – which is a

smaller data structure in most cases.

● The STA sends a PS-POLL packet (Power
Saving Poll) to tell the AP that it is awake.

● AP sends the buffered frame.

pspoll diagram

IBSS Mode

● IBSS – without an access point.

IBSS Mode - contd

● IBSS network is often formed without pre-
planning, for only as long as the LAN is needed.

● This type of operation is often referred to as an
Ad Hoc network.
– Also sometimes called “Peer To Peer” network.

● Creating Ad-Hoc network:
– iwconfig wlan0 mode ad-hoc

– (note: if the nic is running, you should run before
this: ifconfig wlan0 down)

– iwconfig wlan0 essid myEssid

– The essid has to be distributed manually (or

 otherwise) to everyone who wishes to connect

 to the Ad-Hoc network.

● The BSSID is a random MAC address.
– (in fact, 46 bits of it are random).

● “iwconfig wlan0 essid myEssid” triggers ibss
creation by calling ieee80211_sta_create_ibss()
– net/mac80211/mlme.c

● Joining an IBSS:
– All members of the IBSS participate in beacon

generation.

– The members are synchronized (TSF).

– The beacon interval within an IBSS is established
by the STA that instantiates the IBSS.

– ieee80211_sta_create_ibss() (mlme.c)

– The bssid of the ibss is a random address (based on mixing
get_random_bytes() and MAC address).

Mesh Mode (80211s)

Full Mesh:In the full mesh topology, each
node is connected directly to each of the
others.

Mesh Mode (80211s)

Partial Mesh:nodes are connected to only
some, not all.

802.11s (Mesh)

● 802.11s started as a Study Group of IEEE
802.11 in September 2003, and became a TG
(Task Group) in 2004. (name: TGs)

● In 2006, two proposals, out of 15, (the "SEE-
Mesh" and "Wi-Mesh" proposals) were merged
into one. This is draft D0.01.

● Wireless Mesh Networks are also called WMN.
● Wireless mesh networks forward data packets

over multiple wireless hops. Each mesh node
acts as relay point/router for other mesh nodes.

● In 2.6.26, the network stack added support for
the draft of wireless mesh networking (802.11s),
thanks to the open80211s project (
http://www.open80211s.org/).
– There is still no final spec.

– There are currently five drivers in linux with support
to mesh networking (ath5k,b43,libertas_tf,p54,
zd1211rw), and one is under development (rt2x00).

http://www.open80211s.org/

● Open80211.s
● Goal: To create the first open implementation of

802.11s.
– Sponsors:

● OLPC project.

● Cozybit (http://www.cozybit.com/), the company that
developed the mesh software on the OLPC Laptop.

– Luis Carlos Cobo and Javier Cardona (both from Cozybit)
developed the Linux mac80211 mesh code.

● Nortel

● 80211.s defines a default routing protocol called
HWMP (Hybrid Wireless Mesh Protocol)

● Based on: Ad Hoc Demand Distance Vector
(AODV) routing (C. Perkins); rfc3561.

● The HWMP protocol works with layer 2 (Mac
addresses).

● The 80211 header was extended:

– A ttl field was added to avoid loops.

● The current implementation uses on demand
path selection.

● The draft also talks about proactive path
selection.
– This is not implemented yet in the Linux Kernel.

– Uses Root Announcement (RANN) messages and
Mesh Portal as a root.

● As with IPV4 static routes, you can force a
specific next hop for a mesh station
(MESH_PATH_FIXED flag)
– (mesh_path_fix_nexthop() in mesh_pathtbl.c)

● Every station is called an MP. (Mesh Point)

● MPP is a Mesh Portal. (For example, when an MP is used to
connect to external network, like the Internet).

● Each station holds a routing table (struct mesh_table) – helps to
decide which route to take.

● In the initial state, when a packet is sent to another station,
there is first a lookup in the mesh table; there is no hit, so a
PREQ (Path Request) is sent as a broadcast.

– When the PREQ is received on all stations except the final
destination, it is forwarded.

– When the PREQ is received on the final station, a PREP is
sent (Path Reply).

– If there is some failure on the way, a PERR is sent.(Path
Error).

● Handled by mesh_path_error_tx(), mesh_hwmp.c
● The route take into consideration an airtime metric

– Calculated in airtime_link_metric_get() (based on rate and other hw
parameters).

● POWER SAVING in the MESH spec is optional.

● Advantage:

– Rapid deployment.

– Minimal configuration; inexpensive.

– Easy to deploy in hard-to-wire environments.
● Disadvantage:

– Many broadcasts limit network performance
● You can set a wireless device to work in mesh mode only with

the iw command (You cannot perform this with the wireless
tools).

● Example: setting a wireless nic to work in mesh mode:

– iw dev wlan1 interface add mesh type mp mesh_id 1

– (type = mp => Mesh Point)

802.11 Physical Modes

● 802.11 (WiFi) is a set of standards for wireless
networking, which were defined in 1997 but
started to become popular in the market
around 2001.

● 802.11a (1999) at 5 GHz, 54MBit maximum
speed; range about 30m.

● 802.11b (1999) at 2.4GHz, 11Mbit maximum
speed, range about 30m.

● 802.11g (2003) at 2.4GHz, 54Mbit maximum
speed, range about 30m.

● 802.11n (2008) at 2.4GHz/5GHz, 200 Mbit
(typical), range about 50m.

● is planned to support up to about 540Mbit/ 600
Mbit.

● Improves the previous 802.11 standards by
adding multiple-input multiple-output (MIMO)
– multiple antennas.

– High Throughput (HT).

– Use packet aggregation
● The ability to send several packets together at one time.

● Still is considered a proposal.
– Expected to be approved only in December 2009 or

later.

● iwlagn and ath9k are the only drivers that
support 80211.n in the Linux kernel at the
moment.

● Tip: how can I know whether my wireless nic
supports 80211.n?
– Run: iwconfig

– You should see : "IEEE 802.11abgn" or somesuch.

Appendix: mac80211
implementation details

● BSSID = Basic Service Set Identification.
● Each BSS has an BSSID.
● BSSID is an 48 bit number (like MAC address).

– This avoids getting broadcasts from other networks
which may be physically overlapping.

– In infrastructure BSS, the BSSID is the MAC
address of the Access Point which created the BSS.

– In IBSS, the BSSID is generated from calling a
random function (generating 46 random bits; the
other 2 are fixed).

Modes of operation

● A wireless interface always operates in one of
the following modes:

● Infrastructure mode: with an AccessPoint (AP)
– The access point hold a list of associated stations.

– also called managed)

● IBSS (Independent BSS,Ad-Hoc) mode
– When using ad-hoc, an access point is not needed.

● Monitor mode
● WDS (Wireless Distribution System)

Modes of operation - contd.

– Wireless Distribution System (WDS) - allows access
points to talk to other access points.

● Mesh

see: include/linux/nl80211.h:

enum nl80211_iftype {

 NL80211_IFTYPE_UNSPECIFIED,

 NL80211_IFTYPE_ADHOC,

 NL80211_IFTYPE_STATION,

 NL80211_IFTYPE_AP,

 NL80211_IFTYPE_AP_VLAN,

 NL80211_IFTYPE_WDS,

 NL80211_IFTYPE_MONITOR,

 NL80211_IFTYPE_MESH_POINT,

}

cfg80211 and nl80211

● Wireless-Extensions has a new replacement;
● It is cfg80211 and nl80211 (message-based

mechanism, using netlink interface).
● iw uses the nl80211 interface.

– You can compare it the the old ioctl-based net-tools
versus the new rtnetlink IPROUTE2 set of tools.

– You cannot set master mode with iw.

– You cannot change the channel with iw.

● Wireless git trees:
● Wireless-testing

● Was started on February 14, 2008 by John Linville.

– primary development target.

– the bleeding edge Linux wireless developments.
● wireless-next-2.6

● Wireless-2.6

● Daily compat-wireless tar ball in:

● http://www.orbit-lab.org/kernel/compat-wireless-2.6/

● The compat-wireless tar ball includes only part of the kernel

– (Essentially it includes wireless drivers and wireless stack)

http://www.orbit-lab.org/kernel/compat-wireless-2.6/

● Fedora kernels are usually up-to-date with wireless-testing git
tree.

● There is usually at least one pull request (or more) in a week,
to the netdev mailing list (main Linux kernel networking mailing
list).

● The Maintainer of the wireless (802.11) in the Linux kernel is
John Linville (RedHat), starting from January 2006.

● For helping in delving into the mac80211 code little help.

● Important data structures:

● struct ieee80211_hw – represents hardware information and

state (include/net/mac80211.h).

– Important member: void *priv (pointer to private area).

– Most drivers define a struct for this private area , like
lbtf_private (Marvell) or iwl_priv (iwlwifi of Intel) or
mac80211_hwsim_data in mac80211_hwsim.

– Every driver allocates it by ieee80211_alloc_hw()

– A pointer to ieee80211_ops (see later) is passed as a
parameter to ieee80211_alloc_hw().

– Every driver calls ieee80211_register_hw() to create wlan0
and wmaster0 and for various initializations.

● You set the machine mode prior to calling
ieee80211_register_hw() by assigning flags for the
interface_modes flags of wiphy member

– wiphy itself is a member of ieee80211_hw structure.

– For example,

hw->wiphy->interface_modes =

 BIT(NL80211_IFTYPE_STATION) |

 BIT(NL80211_IFTYPE_AP);
● This sets the machine to be in Access Point mode.

● struct ieee80211_if_ap – represents an access point. (see
ieee80211_i.h)

● Power saving members of ieee80211_if_ap:

– ps_bc_buf (multicast/broadcast buffer).

– num_sta_ps (number of stations in PS mode).

● struct ieee80211_ops – The drivers use its members. (include/net/
mac80211.h).

● For example, config (to change a channel) or config_interface

to change bssid.

● Some drivers upload firmware at the start() method, like
lbtf_op_start() in libetras_tf driver or zd_op_start() (which calls
zd_op_start() to upload firmware zd1211rw

● All methods of this struct get a pointer to struct ieee80211_hw
as a first parameter.

– There are 24 methods in this struct.

– Seven of them are mandatory:
tx,start,stop,add_interface,remove_interface,config and
configure_filter.

– (If anyone of them is missing, we end in BUG_ON())

● Receiving a packet is done by calling
ieee80211_rx_irqsafe() from the low level
driver. Eventually, the packet is handled by
__ieee80211_rx():

● __ieee80211_rx()(struct ieee80211_hw *hw,
 struct sk_buff *skb,
 struct ieee80211_rx_status *status);

● ieee80211_rx_irqsafe() can be called from interrupt
context.

– There is only one more mac80211 method which can
be called from interrupt context:

– ieee80211_tx_status_irqsafe()

● Data frames
– Addr1 – destination (receiver MAC address).

– Addr2 – source (transmitter MAC address).

– Addr3 - DS info

– Addr4 – for WDS.

● Management frames
– Addr1 – destination (receiver MAC address).

– Addr2 – source (transmitter MAC address).

– Addr3 - DS info

Firmware

● Firmware:
– Most wireless drivers load firmware in the probe

method (by calling request_firmware())

– Usually the firmware is not open source.

– Open FirmWare for WiFi networks site:

– http://www.ing.unibs.it/openfwwf/
● Written in assembler.

– B43 firmware will be replaced by open source
firmware.

– ath5k/athk9k driver doesn't load firmware. (its fw is
burnt into an onchip ROM)

http://www.ing.unibs.it/openfwwf/

Wireless Future trends (WiMax)

● WiMax - IEEE 802.16.
● There are already laptops which are sold with
● WiMax chips (Toshiba, Lenovo).
● WiMax and Linux:
● http://linuxwimax.org/
● Inaky Perez-Gonzalez from Intel

– (formerly a kernel USB developer)

● Location in the kernel tree: drivers/net/wimax.

http://linuxwimax.org/

Wireless Future trends (WiMax) -
contd

● Two parts:
● Kernel module driver
● User space management stack, WIMAX

Network Service.
● A request to merge linux-wimax GIT tree with

the netdev GIT tree was sent in 26.11.08
● http://www.spinics.net/lists/netdev/msg81902.html

● There is also an initiative from Nokia for a WiMax stack for
Linux.

http://www.spinics.net/lists/netdev/msg81902.html

Tips

● How can I know if my wireless nic was
configured to support power management ?
– Look in iwconfig for “Power Management” entry.

● How do I know if my USB nic has support in
Linux?
– http://www.qbik.ch/usb/devices/

● How do I know which Wireless Extensions does
my kernel use?

● Grep for #define WIRELESS_EXT in
include/linux/wireless.h in your kernel tree.

http://www.qbik.ch/usb/devices/

● How can I know the channel number from a
sniff?
– Look at the radiotap header in the sniffer output;

channel frequency translates to a channel number
(1 to 1.)

– See also Table 15-7—DSSS PHY frequency
channel plan , in the 2007 80211

– Often, the channel number appears in square
brackets. Like:

– channel frequency 2437 [BG 6]

– BG stands for 802.11B/802.11G, respectively

● Channel 14 for example would show as B,
because you're not allowed to transmit 802.11G
on it.

● Israel regdomain:
– http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL

– IL is in the range 1-13.

– With US configuration, only channel 1 to 11 are selectable. Not 12,13.

– Many Aps ares shipped on a US configuration.

http://wireless.kernel.org/en/developers/Regulatory/Database?alpha2=IL

● What is the MAC address of my nic?
– cat /sys/class/ieee80211/phy*/macaddress

–

– Common Filters for wireshark sniffer:
Management Frames wlan.fc.type eq 0

Control Frames wlan.fc.type eq 1

Data Frames wlan.fc.type eq 2

Association Request wlan.fc.type_subtype eq 0

Association response wlan.fc.type_subtype eq 1

Reassociation Request wlan.fc.type_subtype eq 2

Reassociation Response wlan.fc.type_subtype eq 3

Probe Request wlan.fc.type_subtype eq 4

Probe Response wlan.fc.type_subtype eq 5

Beacon wlan.fc.type_subtype eq 8

Announcement Traffic Indication Map (ATIM) wlan.fc.type_subtype eq 9

Disassociate wlan.fc.type_subtype eq 10

Authentication wlan.fc.type_subtype eq 11

Deauthentication wlan.fc.type_subtype eq 12

Action Frames wlan.fc.type_subtype eq 13

Block Acknowledgement (ACK) Request wlan.fc.type_subtype eq 24

Block ACK wlan.fc.type_subtype eq 25

Power-Save Poll wlan.fc.type_subtype eq 26

Request to Send wlan.fc.type_subtype eq 27

Sniffing a WLAN

● You could sniff with wireshark
● Sometime you can't put the wireless interface to

promiscuous mode (or it is not enough). You
should set the interface to work in monitor
mode (For example: iwconfig wlan0 mode
monitior).

● If you want to capture traffic on networks other
than the one with which you're associated, you
will have tohave to capture in monitor mode.

Sniffing a WLAN - contd.

● See the following wireshark wiki page, talking
about various wireless cards and sniffing in
Linux;

● WLAN (IEEE 802.11) capture setup:
– http://wiki.wireshark.org/CaptureSetup/WLAN#head-bb8373ef4903fe9da2b8375331726541fb1ad32d

● Using a filter from command line:
– tshark -R wlan -i wlan0

– tethereal -R wlan -i wlan0 -w wlan.eth

– You will see this message in the kernel log:
● “device wlan0 entered promiscuous mode”

http://wiki.wireshark.org/CaptureSetup/WLAN#head-bb8373ef4903fe9da2b8375331726541fb1ad32d

Sniffing a WLAN - contd.

● Sometimes you will have to set a different
channel than the default one in order to see
beacon frames (try channels 1,6,11)
– iwconfig wlan1 channel 11

– Tip: usefull wireshark display filter:
● For showing only beacons:
● wlan.fc.type_subtype eq 8

– For tshark command line:
● tshark -R "wlan.fc.type_subtype eq 8" -i wlan0
● (this will sniff for beacons).

Glossary

● AMPDU=Application Message Protocol Data
Unit.

● CRDA = Central Regulatory Domain Agent
● CSMA/CA = Carrier Sense Multiple Access with

Collision Avoidance
● CSMA/CD Carrier Sense Multiple Access with

Collision Detection
● DS = Distribution System
● EAP = The Extensible Authentication Protocol
● ERP = extended rate PHY

● HWMP = Hybrid Wireless Mesh Protocol
● MPDU = MAC Protocol Data Unit
● MIMO = Multiple-Input/Multiple-Output
● PSAP = Power Saving Access Points
● PS = Power Saving.
● RSSI = Receive signal strength indicator.
● TIM = Traffic Indication Map
● WPA = Wi-Fi Protected Access
● WME = Wireless Multimedia Extensions

Links

● 1) IEEE 80211 specs:
– http://standards.ieee.org/getieee802/802.11.html

● 2) Linux wireless status June - 2008
– http://www.kernel.org/pub/linux/kernel/people/mcgro

f/presentations/linux-wireless-status.pdf

● 3) official Linux Wireless wiki hosted by
Johannes Berg.
– http://wireless.kernel.org/

– or http://linuxwireless.org/

http://standards.ieee.org/getieee802/802.11.html

● 4) A book:
– 802.11 Wireless Networks: The Definitive Guide

– by Matthew Gast

– Publisher: O'Reilly
● 5) Wireless Sniffing with Wireshark - Chapter 6 of Syngress

Wireshark and Ethereal Network Protocol Analyzer Toolkit.

● 6) http://www.lesswatts.org/

– Saving power with Linux (an Intel site)

http://www.lesswatts.org/

● 7) A book: Wireless Mesh Networking:
Architectures, Protocols And Standards

 by Yan Zhang, Jijun Luo, Honglin Hu (Hardcover
– 2006)

Auerbach Publications

8) http://www.radiotap.org/

Images

● Beacon wireshark filter:
● wlan.fc.type_subtype eq 8

– shows only beacons.

Beacon filter – sniff

Beacon interval and DTIM period in
edimax router (BR-6504N) (From

the manual)

Thank You !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

