Open Minded Storms

The NXT meets
OpenSource

Agenda
—

e Introductions

e Nalve programming

e Event-driven programming
e The bright side of the Moon
e Future and closing notes

Intro: myself & the presentation
—

e A few words about your humble servant

e Brief review of my academic work in robotics
- Don’t worry, it's remarkably brief

e The Jaw Dropper

— | don’t have it.
- Wish | had.
— Sorry folks.

Intro: The Platform (brief)
c—

Programmable robotic LEGO brick

Released July 2006

Attaches to usual Technic bricks

3 motors / 4 sensors per brick

Able to store programs on FLASH

Can be controlled / programmed by USB / bluetooth
100x64 LCD screen

PC Speaker-like audio

6XAA batteries or a battery pack

Intro: The Platform (specs.)
c-—

32-bit AT91SAM7S256 main microprocessor @ 48 MHz
256KB flash, 64KB RAM

8-bit ATmega48 microcontroller @ 4 MHz
4KB flash, 512bytes RAM

CSR BlueCore 4 Bluetooth controller @ 26 MHz
8mbit external flash, 47KB RAM

e 100x64 pixel LCD matrix display
e A single USB 2.0 port full speed (12Mmbit/s)
e 4 input ports, 6-wire cable digital platform

— One port complies to an IEC 61158 Fieldbus protocol

e 3 output ports, 6-wire cable digital platform
e Digital Wire Interface for third-party development of external

devices

Intro: The Platform (metal prOn)

Intro: The Platform (metal prOn)

-
=T 4y

S

e
a

Intro: The Platform (metal prOn)

Naive Programming
—

e Native firmware
- NXT-G, NBC/NXC
- RobotC / URBI
- Simulink’s autogenerated C
- USB/Bluetooth bindings for everything

e |[eJOS NXJ (Java)
e LEJOS OSK (C/C++)
e pbLua (Lua)

Naive: Got Python?

c--
e Douglas P Lau wrote NXT_Python

e \Works over USB/Bluetooth
— Doesn’t run on the NXT

e Gives you all the sweet Python lovin’:

import nxt.locator

try:

sock = nxt.locator.find one brick()
except:

sock = None
if sock:

brick = sock.connect()

name, host, signal strength, user flash = brick.get device info()
print (“Found brick: %s” % name)

sock.close ()

Naive: Read sensors, do stuff

Demo: Turn wheel while pressing button

Naive: Let’s build something!!!

Goal
e

e A four-wheeled platform...
-~ Two independently controlled

e Carrying a rotating sensor array...
— Distance sensor and color sensor
— Sensors point to ground

e \Which will roam a desk...
— Detecting its shape and not falling off...

e Finding a plastic ball located on it!
— Attached to it, really
— Distinguishing it from another ball with a different color

Pubic Apology to Civil Engineers
—

e | used to think your job Is easy

e Repent me of my sin, friends
- You guys don’t even have source control! Gosh!

e Your construction will affect your code
- More honestly, your coding cycle

e Yes, construction Is similar to software
design!

Pubic Apology to Civil Engineers

Pubic Apology to Civil Engineers

Naive: It sucks.
.

e Robots are about concurrent real time
e Almost immediately code becomes a mess

e Maybe | could have made it
— But then | would be left with just a robot
- And | already said I like infrastructure

e Two approaches for solution:
— Threads and locks
— Event driven

e Actually, make that one just one approach.

Event Driven Programming
..

e Python... Event driven... Twisted!
- Actually, scratch that

e Writing a reactor in Python is dead easy

e An event has four properties:
— interval
— data source
— predicate
— callback

e \We'll use an event heap
- Sorted by next invocation time

Event Driven Programming
<

e Python... Event driven... Twisted!
— Actually, scratch that 4

PS Wntmg A roactor in

Operation Binary

e AN even
— Interv
- data s
— predic;i
— callbac
e \We'll us
merge O(n)
- Sortetdoy et

createHeap | ©O(1)

findMin o(7)

deleteMin O(lg n)

insert O(lg n)

decreaseKey O(lg n)

Event Driven Programming
..

D reactor.add sources (InvocationSource (name='sensor array motor source',
3 interval=self.INTERVAL,
Ef data source=self.motor.get position,
g predicate=self.motor predicate,
o callback=self.motor callback,))
def invoke sources (self):
evaluated event sources = []
while self.event source heap:
if self.event source heap[0].timestamp > time.time() :
break

o event source = heapq.heappop (self.event source heap)
<8 self.logger.log(5, 'invoking source %s' % event_ source)
— if event source.invoke () :
o) —
o evaluated event sources.append(event_ source)
8 for event source in evaluated event sources:
e event source.reset ()

self.add sources (event source)

E...v...e...n... t... ... D...r...1... V...

e It was easy to write
— ...and as slow as an underclocked PDP11

e Potential suspects:
- CSR BlueCore 4 Bluetooth chip
- Some kind of BT related software stack suckiness
— The NXT is simply slow? (?!)

Depeche Mode
—

e "It means hurried fashion or fashion dispatch.
| like the sound of that.”
- Sodol

e \We have clean reactor/logic separation

e \We have the reactor in Python
- s/Python/pseudo-code/

e Let's just move the reactor inside

Native firmware
— NXT-G, NBC/NXC
- RobotC / URBI

- Simulink’s autogenerated C

e |eJOS NXJ (Java)
e LEJOS OSK (C/C++)
e pbLua (Lua)

Lua? What'’s that?!
G

e Fast, portable, embeddable, powerful, small, free.

e An ultra-light dynamic language
— Minimalism is king
- Not features, mechanisms

e Dynamic, simple, multi-paradigm, extensible, first-
class-everything,...

— Kinda reminds me of Python, no?
- Arguably yes - but with the batteries totally excluded

Lua? What'’s that?!
G

e Tables (associative arrays) are king
— The only data structure
- Have a few well defined magical properties (meta-table)
- Many features implemented through them

e Lexical closures
e First-class-everything

function foo()
local bar = 5
function baz ()

print (bar)

end
return baz
end
foo () ()

pbLua
c-—

e Free (as in beer) project by Ralph Hempel
- free-as-in-for-real-soon-now™ :)

e Ports Lua 5.1 to the NXT
- firmware replacement

e True to the spirit of Lua

- “Whatever you want, | ain’t got it and you can
make it yourself real easy with X, Y and Z”

e Covers all NXT functionality | needed so far

pbLua features
—

e Interactive interpreter over USB and BT

e Low and mid-level access to NXT features
e Very primitive file system

e XMODEM support for serial data transfer
e Pretty fast

How fast Is pretty fast?

Demo: Speed measurement. NXT_ Python vs. pbLua

So now what do we do?
cc

[Robo-LogicJ
Protocol] |

AN T
Reactor } /

(mine) \[

/

Framing J

Lua Inside NXT Python on my Mac

Development Cycle
-

e NO easy way to deploy stuff

e Copy-Paste to console Is prime method
- Thank God for pbcopy(1) and pbpaste(1) on OSX

e Saving files Is a delicate process
e Debugging is a bitch

e Solutions?

— Simulator
— Over-The-Air Code Loading

Over The Air Code Loading
—

e A simple program
- Needs no maintenance
— Should be developed quickly
- “Only” 250 lines

e Develop and store on Flash filesystem
e Dynamically load bigger programs at will

Key loader components

function LoadPieces ()
leftover bytes = "'
while (true) do

local piece, leftover bytes = BtBlockUntilOnePieceReceived(true, '')
if piece == 'LoaderExecute' then

break
end

runnable piece = loadstring(piece)

if (runnable piece ~= nil) then
DisplayTextScroll ("running piece")
runnable piece ()

else function OTAInitialize()
error ("bad piece :-(") StartupAndGetConnection ()
end DisplayTextScroll ("wait for chunk")

end E LoadPieces ()

end E DisplayTextScroll ("running program')
i LoaderExecute (leftover bytes)
: nxt.BtDisconnectAll ()
E WaitForUser ('end: hit [orange]')

__

So now what do we do?

[OTA Loader J

[Robo-LogicJ
|

[Proicis J_ Reactor
oS (Twisted)

Bootstrap

|

)

Lua Inside NXT Python on my Mac

Lua Reactor
.]

§ reactor:AddEvent (2500, nil, nil, function cb () nxt.SoundTone () end)
D EERN
function Reactor:Run()
local data
local current event
self.running = true
while (self.running) do
self:TestAbortButton ()
data = IO.read()
) if ((data ~= nil) and (#data > 0)) then
<8 self. framer:DataReceived (data)
— end
-g repeat
8 current event = self:ConditionalPopEvent ()
o if (current event ~= nil) then
self:HandleEvent (current_ event)
end
until (current event == nil)

end
end

e 32-bit AT91SAM7S256 main microprocessor @ 48 MHz
256KB flash, 64KB RAM

You guys remember how
DOS dudes were bitchin’

about 640KB RAM?

‘nuff said.

All these buzzwords won’t fit in 64KB

All these buzzwords won’t fit in 64KB
co]

e | started catching MemoryErrors

- “Remember, it's just a toy!”
Ralph Hempel, after seeing my loader program

e Memory fragmentation is the real culprit
- No MMU, eh?

e Fight for every byte
— Use preprocessor to split sources into tiny chunks
- Upload no-whitespace code (looks a bit obfuscated)
- Three-stage loader: set nil to anything not in use
— Obsessive use of garbagecollect(‘collect’)

All these buzzwords won’t fit in 64KB
co]

function ReclaimStagelRAM()
ReclaimStageORAM = nil
StartupAndGetConnection = nil
BtWaitForConnection = nil
BtMessageSend = nil
BtEncodeBuffer = nil
VerboseCollection|()

end

function VerboseCollection ()
old usage = collectgarbage ("count")
collectgarbage ("collect")
new _usage = collectgarbage ("count")
DisplayTextScroll('reduced ' .. old usage
end

to

new_usage)

Potential solutions for RAM
ISSUEesS

e Just crammin’ it in
e Better heap management tools for pbLua
e eLua ROM-able tables support

e Replacing AT91SAM7S256 with something
bigger
— Not my cup of tea
- And doesn’t look too easy
— But I'll do anything

Framing woes
S

e "Ghost” data appears in new connections
— After reboots, after disconnects, after a while...

e Strengthen framing mechanism to overcome:
— Stuff silence with NULLs

- Add “instance key” made of random 4 digits
e Messages with wrong key discarded

Framing woes
S

function BtBlockUntilChunkHeaderReceived ()
DisplayTextScroll ("wait for chunk")
local buffer = "'

local chunk_header = nil

repeat
buffer = buffer .. BtBlockUntilDataReceived()
if string.find (buffer, '%z') == nil then
buffer = "'
end

first match offset, last match offset = string.find(buffer,
'SZ2%Z2%ZBZ5XSXEXTIX")
if first match offset ~= nil then

chunk header = string.sub(buffer, first match offset + 4)
end
until chunk header ~= nil
—-- the next line means: return expected bytes, data

return nxt.abs(string.format('0x%s', string.sub(chunk header, 1, 4))),

string.sub (chunk header, 5)
end

So what will | do?

[OTA Loader J

[Robo-LogicJ
|

[Protocol J_ Reactor
| i (Twisted)

Bootstrap

|

e

Reacto \/
(mine)

Lua Inside NXT Python on my Mac

Some closing thoughts
-

e Overall, maybe pbLua was the wrong choice
e To be honest, maybe NXT wasn't best, either
e It has been incredibly fun

- | plan on finishing it, time and feasibility allowing
e Far from being an extreme platform

- Not for hardware junkies nor for algo-heads
- Probably a good overall first choice

e EXxcellent open-source support

Closing: Alternatives
-

e You can get a far stronger box (for more $)

e Imagine the same lecture:
- With 256MB RAM
- SSH, SCP, local Python debugger
- With wi-fi, bluetooth, USB host, GPS, ...

e Consider gumstix or beagleboard
- 150% — 250% for computer alone

e My dream project

Closing: Use my source, Luke
-

e Everything | contributed to this lecture Is In
the public’'s domain

e | plan on releasing publicly when (if) things
work better and after some cleanups

e Feel free to contact me with questions or
requests for source

e Copies of this presentation will be made
available to Haifux after the lecure

Thanks!

I'm available at:
yaniv at aknin dot name

