
Open Minded Storms

The NXT meets 

OpenSource



Agenda

 Introductions

 Naive programming

 Event-driven programming

 The bright side of the Moon

 Future and closing notes



Intro: myself & the presentation

 A few words about your humble servant

 Brief review of my academic work in robotics

– Don’t worry, it’s remarkably brief

 The Jaw Dropper

– I don’t have it.

– Wish I had.

– Sorry folks.



Intro: The Platform (brief)

 Programmable robotic LEGO brick

 Released July 2006

 Attaches to usual Technic bricks

 3 motors / 4 sensors per brick

 Able to store programs on FLASH

 Can be controlled / programmed by USB / bluetooth

 100x64 LCD screen

 PC Speaker-like audio

 6xAA batteries or a battery pack



Intro: The Platform (specs.)‏

 32-bit AT91SAM7S256 main microprocessor @ 48 MHz
256KB flash, 64KB RAM

 8-bit ATmega48 microcontroller @ 4 MHz
4KB flash, 512bytes RAM 

 CSR BlueCore 4 Bluetooth controller @ 26 MHz
8mbit external flash, 47KB RAM

 100×64 pixel LCD matrix display

 A single USB 2.0 port full speed (12Mbit/s) 

 4 input ports, 6-wire cable digital platform

– One port complies to an IEC 61158 Fieldbus protocol

 3 output ports, 6-wire cable digital platform

 Digital Wire Interface for third-party development of external 
devices



Intro: The Platform (metal pr0n)‏



Intro: The Platform (metal pr0n)‏



Intro: The Platform (metal pr0n)‏



Intro: The Platform (metal pr0n)‏



Naïve‏Programming

 Native firmware
– NXT-G, NBC/NXC

– RobotC / URBI

– Simulink’s autogenerated C

– USB/Bluetooth bindings for everything

 leJOS NXJ (Java)

 LEJOS OSK (C/C++)

 pbLua (Lua)



Naïve:‏Got‏Python?

 Douglas P Lau wrote NXT_Python

 Works over USB/Bluetooth
– Doesn’t run on the NXT

 Gives you all the sweet Python lovin’:
import nxt.locator

try:

sock = nxt.locator.find_one_brick()

except:

sock = None

if sock:

brick = sock.connect()

name, host, signal_strength, user_flash = brick.get_device_info()

print (“Found brick: %s” % name)

sock.close()



Naïve:‏Read‏sensors,‏do‏stuff

Demo: Turn wheel while pressing button



Naïve:‏Let’s‏build‏something!!!



Goal

 A four-wheeled platform…
– Two independently controlled

 Carrying a rotating sensor array…
– Distance sensor and color sensor

– Sensors point to ground

 Which will roam a desk…
– Detecting its shape and not falling off…

 Finding a plastic ball located on it!
– Attached to it, really

– Distinguishing it from another ball with a different color



Pubic Apology to Civil Engineers

 I used to think your job is easy

 Repent me of my sin, friends

– You guys don’t even have source control! Gosh!

 Your construction will affect your code

– More honestly, your coding cycle

 Yes, construction is similar to software 

design!



Pubic Apology to Civil Engineers



Pubic Apology to Civil Engineers



Naïve:‏It‏sucks.

 Robots are about concurrent real time

 Almost immediately code becomes a mess

 Maybe I could have made it

– But then I would be left with just a robot

– And I already said I like infrastructure

 Two approaches for solution:

– Threads and locks

– Event driven

 Actually, make that one just one approach.



Event Driven Programming

 Python… Event driven… Twisted!
– Actually, scratch that

 Writing a reactor in Python is dead easy

 An event has four properties:
– interval

– data source

– predicate

– callback

 We’ll use an event heap
– Sorted by next invocation time



Event Driven Programming

 Python… Event driven… Twisted!
– Actually, scratch that

 Writing a reactor in Python is dead easy

 An event has four properties:
– interval

– data source

– predicate

– callback

 We’ll use an event heap
– Sorted by next invocation time

Reminder: a heap



Event Driven Programming

def invoke_sources(self):

evaluated_event_sources = []

while self.event_source_heap:

if self.event_source_heap[0].timestamp > time.time():

break

event_source = heapq.heappop(self.event_source_heap)

self.logger.log(5, 'invoking source %s' % event_source)

if event_source.invoke():

evaluated_event_sources.append(event_source)

for event_source in evaluated_event_sources:

event_source.reset()

self.add_sources(event_source)

R
e
a
c
to

r 
C

o
re

U
s
e
r 

C
o
d
e reactor.add_sources(InvocationSource(name='sensor array motor source',

interval=self.INTERVAL,

data_source=self.motor.get_position,

predicate=self.motor_predicate,

callback=self.motor_callback,))



E…‏v…‏e…‏n…‏t…‏…‏D…‏r…‏i…‏v…‏e…

 It was easy to write

– …and as slow as an underclocked PDP11

 Potential suspects:

– CSR BlueCore 4 Bluetooth chip

– Some kind of BT related software stack suckiness

– The NXT is simply slow? (?!)



Depeche Mode

 "It means hurried fashion or fashion dispatch. 

I like the sound of that.“

– So do I

 We have clean reactor/logic separation

 We have the reactor in Python

– s/Python/pseudo-code/

 Let’s just move the reactor inside



Naïve‏Programming

 Native firmware
– NXT-G, NBC/NXC

– RobotC / URBI

– Simulink’s autogenerated C

– USB/Bluetooth bindings for everything

 leJOS NXJ (Java)

 LEJOS OSK (C/C++)

 pbLua (Lua)

 Native firmware
– NXT-G, NBC/NXC

– RobotC / URBI

– Simulink’s autogenerated C

– USB/Bluetooth bindings for everything

 leJOS NXJ (Java)

 LEJOS OSK (C/C++)

 pbLua (Lua)



Lua?‏What’s‏that?!

 Fast, portable, embeddable, powerful, small, free.

 An ultra-light dynamic language

– Minimalism is king

– Not features, mechanisms

 Dynamic, simple, multi-paradigm, extensible, first-

class-everything,…

– Kinda reminds me of Python, no?

– Arguably yes - but with the batteries totally excluded



Lua?‏What’s‏that?!

 Tables (associative arrays) are king

– The only data structure

– Have a few well defined magical properties (meta-table)

– Many features implemented through them

 Lexical closures

 First-class-everything
function foo()

local bar = 5

function baz()

print(bar)

end

return baz

end

foo()()



pbLua

 Free (as in beer) project by Ralph Hempel

– free-as-in-for-real-soon-now™ :)

 Ports Lua 5.1 to the NXT

– firmware replacement

 True to the spirit of Lua

– “Whatever you want, I ain’t got it and you can 

make it yourself real easy with X, Y and Z”

 Covers all NXT functionality I needed so far



pbLua features

 Interactive interpreter over USB and BT

 Low and mid-level access to NXT features

 Very primitive file system

 XMODEM support for serial data transfer

 Pretty fast



How fast is pretty fast?

Demo: Speed measurement: NXT_Python vs. pbLua



So now what do we do?

Python on my MacLua Inside NXT

Protocol

Reactor

(mine)
Framing

IO

Event

Robo-Logic

Reactor

(Twisted)
Protocol



Development Cycle

 No easy way to deploy stuff

 Copy-Paste to console is prime method
– Thank God for pbcopy(1) and pbpaste(1) on OSX

 Saving files is a delicate process

 Debugging is a bitch

 Solutions?
– Simulator

– Over-The-Air Code Loading



Over The Air Code Loading

 A simple program

– Needs no maintenance

– Should be developed quickly

– “Only” 250 lines

 Develop and store on Flash filesystem

 Dynamically load bigger programs at will



Key loader components

function LoadPieces()

leftover_bytes = ''

while (true) do

local piece, leftover_bytes = BtBlockUntilOnePieceReceived(true, '')

if piece == 'LoaderExecute' then

break

end

runnable_piece = loadstring(piece)

if (runnable_piece ~= nil) then

DisplayTextScroll("running piece")

runnable_piece()

else

error("bad piece :-(")

end

end

end

function OTAInitialize()

StartupAndGetConnection()

DisplayTextScroll("wait for chunk")

LoadPieces()

DisplayTextScroll("running program")

LoaderExecute(leftover_bytes)

nxt.BtDisconnectAll()

WaitForUser('end: hit [orange]')

end



So now what do we do?

Python on my MacLua Inside NXT

Protocol

Reactor

(mine)
Framing

IO

Event

Robo-Logic

Reactor

(Twisted)
Protocol

Bootstrap

Protocol

Reactor

(mine)

Framing

IO

Event

OTA Loader



Lua Reactor

function Reactor:Run()

local data

local current_event

self.running = true

while (self.running) do

self:TestAbortButton()

data = IO.read()

if ((data ~= nil) and (#data > 0)) then

self.framer:DataReceived(data)

end

repeat

current_event = self:ConditionalPopEvent()

if (current_event ~= nil) then

self:HandleEvent(current_event)

end

until (current_event == nil)

end

end

reactor:AddEvent(2500, nil, nil, function cb() nxt.SoundTone() end)

R
e
a
c
to

r 
C

o
re

U
s
e
r



Intro: The Platform (specs.)‏

 32-bit AT91SAM7S256 main microprocessor @ 48 MHz
256KB flash, 64KB RAM

 8-bit ATmega48 microcontroller @ 4 MHz
4KB flash, 512bytes RAM 

 CSR BlueCore 4 Bluetooth controller @ 26 MHz
8mbit external flash, 47KB RAM

 100×64 pixel LCD matrix display

 A single USB 2.0 port full speed (12Mbit/s) 

 4 input ports, 6-wire cable digital platform

– One port complies to an IEC 61158 Fieldbus protocol

 3 output ports, 6-wire cable digital platform

 Digital Wire Interface for third-party development of external 
devices

 32-bit AT91SAM7S256 main microprocessor @ 48 MHz
256KB flash, 64KB RAM



All‏these‏buzzwords‏won’t‏fit‏in64‏KB



All‏these‏buzzwords‏won’t‏fit‏in64‏KB

 I started catching MemoryErrors
– “Remember, it’s just a toy!”

Ralph Hempel, after seeing my loader program

 Memory fragmentation is the real culprit
– No MMU, eh?

 Fight for every byte
– Use preprocessor to split sources into tiny chunks

– Upload no-whitespace code (looks a bit obfuscated)

– Three-stage loader: set nil to anything not in use

– Obsessive use of garbagecollect(„collect‟)



All‏these‏buzzwords‏won’t‏fit‏in64‏KB

function ReclaimStage1RAM()

ReclaimStage0RAM = nil

StartupAndGetConnection = nil

BtWaitForConnection = nil

BtMessageSend = nil

BtEncodeBuffer = nil

VerboseCollection()

end

function VerboseCollection()

old_usage = collectgarbage("count")

collectgarbage("collect")

new_usage = collectgarbage("count")

DisplayTextScroll('reduced ' .. old_usage .. ' to ' .. new_usage)

end



Potential solutions for RAM 
issues

 Just crammin’ it in

 Better heap management tools for pbLua

 eLua ROM-able tables support

 Replacing AT91SAM7S256 with something 
bigger
– Not my cup of tea

– And doesn’t look too easy

– But I’ll do anything



Framing woes

 “Ghost” data appears in new connections

– After reboots, after disconnects, after a while…

 Strengthen framing mechanism to overcome:

– Stuff silence with NULLs

– Add “instance key” made of random 4 digits

 Messages with wrong key discarded



Framing woes

 “Ghost” data appears in new connections

– After reboots, after disconnects, after a while…

 Strengthen framing mechanism to overcome

function BtBlockUntilChunkHeaderReceived()

DisplayTextScroll("wait for chunk")

local buffer = ''

local chunk_header = nil

repeat

buffer = buffer .. BtBlockUntilDataReceived()

if string.find(buffer, '%z') == nil then

buffer = ''

end

first_match_offset, last_match_offset = string.find(buffer, 

'%z%z%z%z%x%x%x%x')

if first_match_offset ~= nil then

chunk_header = string.sub(buffer, first_match_offset + 4)

end

until chunk_header ~= nil

-- the next line means: return expected_bytes, data

return nxt.abs(string.format('0x%s', string.sub(chunk_header, 1, 4))), 

string.sub(chunk_header, 5)

end



So what will I do?

Python on my MacLua Inside NXT

Protocol

Reactor

(mine)
Framing

IO

Event

Robo-Logic

Reactor

(Twisted)
Protocol

Bootstrap

Protocol

Reactor

(mine)

Framing

IO

Event

OTA Loader



Some closing thoughts

 Overall, maybe pbLua was the wrong choice

 To be honest, maybe NXT wasn’t best, either

 It has been incredibly fun
– I plan on finishing it, time and feasibility allowing

 Far from being an extreme platform
– Not for hardware junkies nor for algo-heads

– Probably a good overall first choice

 Excellent open-source support



Closing: Alternatives

 You can get a far stronger box (for more $)

 Imagine the same lecture:
– With 256MB RAM

– SSH, SCP, local Python debugger

– With wi-fi, bluetooth, USB host, GPS, …

 Consider gumstix or beagleboard
– 150$ – 250$ for computer alone

 My dream project



Closing: Use my source, Luke

 Everything I contributed to this lecture is in 
the public’s domain

 I plan on releasing publicly when (if) things 
work better and after some cleanups

 Feel free to contact me with questions or 
requests for source

 Copies of this presentation will be made 
available to Haifux after the lecure



Thanks!

I’m available at:

yaniv at aknin dot name


