
Orna Agmon Ben-Yehuda ladypine - haifux.org

OpenMP Usage

Orna Agmon Ben-Yehuda

March 15, 2009 OpenMP Usage Slide 1

Orna Agmon Ben-Yehuda ladypine - haifux.org

What is this talk about?

• Dilemmas I encountered when transforming legacy code using

openMP

• Tricks I found to make my life easier

• The things I bothered to remember about openMP, because I

found them useful.

• Presenting option for openMP usage

This talk is not:

• Inclusive - this is why we did the tutorial first! (and there is

more in the spec)

• Conclusive - this is work in progress.

March 15, 2009 OpenMP Usage Slide 2

Orna Agmon Ben-Yehuda ladypine - haifux.org

Code Preparation For thread Parallelization

Thread safe programming before going to actually use the omp:

• Identify and/or eliminate static variables in your own code

• Identify and/or eliminate non-thread safe function calls.

• Protect global work area by making them threadprivate or get

rid of them.

• Define variables with as small a scope as possible.

• Add const wherever possible.

• Add /*not const*/ when impossible.

• Add /*could have been const*/ when c limitations prevent

adding the const, but otherwise it could have been.

March 15, 2009 OpenMP Usage Slide 3

Orna Agmon Ben-Yehuda ladypine - haifux.org

Thread safe functions

A function is thread-safe when it does not use static data. There is a

big overlap of reentrant and threadsafe code. For example, man 3

rand:

DESCRIPTION...

“ The function rand() is not reentrant or thread-safe, since it uses

hidden state that is modified on each call. This might just be the

seed value to be used by the next call, or it might be something more

elaborate. In order to get reproducible behaviour in a threaded

application, this state must be made explicit. The function rand r()

is supplied with a pointer to an unsigned int, to be used as state.

This is a very small amount of state, so this function will be a weak

pseudo-random generator. Try drand48 r(3) instead.”

March 15, 2009 OpenMP Usage Slide 4

Orna Agmon Ben-Yehuda ladypine - haifux.org

Thought preparation for thread parallelization

• Chart a flow diagram of who calls who - top to bottom.

• Consider automatic tools like gprof (it will anyhow focus on main

time consuming functions) or callgraph (valgrind 3.3.1).

• Decide on the parallelization granularity for now - Start with

large granularity and refine? How much does opening a thread

cost? Always profile.

• Go along the flow, parallelize from top, then if needed to balance

loads, parallelize the bottomer parts.

• Add /*pll inside*/ before functions which are pll inside, but their

surrounding is also pll, to keep the parallelization in the same

level.

March 15, 2009 OpenMP Usage Slide 5

Orna Agmon Ben-Yehuda ladypine - haifux.org

Combining Compilers

• Compilers which are not from the same house may support the

syntax with a different internal implementation. Code compiled

using another compiler must be treated as non-thread-safe (a

critical code).

• Features left for implementation are really different and cannot

be depended upon: gomp does not support nested for loops - it

just gets stuck. pgcc does not get stuck, although an old PG

book I have says the feature is not supported.

March 15, 2009 OpenMP Usage Slide 6

Orna Agmon Ben-Yehuda ladypine - haifux.org

configure.in

C_OMP="-no-open-mp-support!!!"

F_OMP="-no-open-mp-support!!!"

SAME_HOUSE=0

case "$FC" in

pgf90)FFLAGS="-r8 -i4"

case "$CC" in

pgcc)SAME_HOUSE=1;;

*gcc);;

esac

F_OMP="-mp";;

g77) FFLAGS="-r8 -i4";;

gfortran) FFLAGS="-fdefault-real-8 -i4"

case "$CC" in

pgcc);;

March 15, 2009 OpenMP Usage Slide 7

Orna Agmon Ben-Yehuda ladypine - haifux.org

*gcc)SAME_HOUSE=1;;

esac

F_OMP="-fopenmp";;

ifort) FFLAGS="-align all -r8 -i4 -nofor_main"

F_OMP="-openmp -openmp-lib compat";;

esac

AC_SUBST(FFLAGS)

case "$SAME_HOUSE" in

1) CPPFLAGS="-DSAME_HOUSE $CPPFLAGS" ;;

esac

March 15, 2009 OpenMP Usage Slide 8

Orna Agmon Ben-Yehuda ladypine - haifux.org

makefile.in

omp:

$(MAKE) OUTPUT_LETTER="m" C_EXTRA_FLAGS="$(OPTIMIZE)

$(C_OMP)" F_EXTRA_FLAGS="$(OPTIMIZE) $(F_OMP)"

GPP_EXTRA_FLAGS="$(OPTIMIZE) $(C_OMP)"

EXTRA_LIBS="$(EXTRA_LIBS_M)" LIBZ_LIB=-lz_p -o

$(MACHINE_TYPE)/$(OUTPUT)m_o exe

March 15, 2009 OpenMP Usage Slide 9

Orna Agmon Ben-Yehuda ladypine - haifux.org

Large Programs in Fortran

• setenv GOMP STACKSIZE 10000000, needing patch for gcc 4.2

(beginning of 2008).

March 15, 2009 OpenMP Usage Slide 10

Orna Agmon Ben-Yehuda ladypine - haifux.org

omp support.h

#ifndef OMP_SUPPORT_H

#define OMP_SUPPORT_H

#ifdef _OPENMP

/*might not exist on some systems*/

#include <omp.h>

/**create #pragma omp blah, usage: OMP("omp for")

Thanks to Oleg Goldshmidt*/

#define OMP(C) _Pragma(#C)

#define PRINT_THREAD(I) printf(\

"thread %d on iteration %d",omp_get_thread_num(),I)

March 15, 2009 OpenMP Usage Slide 11

Orna Agmon Ben-Yehuda ladypine - haifux.org

omp support.h (cont)

#else

#define OMP(C)

#define PRINT_THREAD(I)

#endif

/**call omp_get_num_threads even without omp*/

int protected_omp_get_num_threads(void);

#endif

March 15, 2009 OpenMP Usage Slide 12

Orna Agmon Ben-Yehuda ladypine - haifux.org

omp support.c

#include <stdio.h>

#include "omp_support.h"

/**for fortran*/ int protectedompgetnumthreads_(void);

int protectedompgetnumthreads_(void){

return protected_omp_get_num_threads();}

int protected_omp_get_num_threads(void){

#ifdef _OPENMP

int i=omp_in_parallel();

#else

int i=0;

#endif

printf("%d active threads",i);

return i;}

March 15, 2009 OpenMP Usage Slide 13

Orna Agmon Ben-Yehuda ladypine - haifux.org

One parallel loop

For correct and fast (programmer time) results, begin with combined:

int i;/*not uint!!*/

OMP(omp parallel for)

for (i=0; i < JMAX ; ++i){}

Then profile and replace by longer parallel parts, with single and for

instructions.

March 15, 2009 OpenMP Usage Slide 14

Orna Agmon Ben-Yehuda ladypine - haifux.org

Protecting the Setting of a shared variable

• It can be protected using a critical section.

• It can be protected using an atomic pragma, which is more

efficient (may be hardware supported) but supports only a single

statement with specific syntax (for example referring to only one

shared variable).

March 15, 2009 OpenMP Usage Slide 15

Orna Agmon Ben-Yehuda ladypine - haifux.org

Can I Ignore protection of a shared variable?

When the variable is only as long as the machine’s word, so there is

support for an atomic operation of that size (on 64 bit - up to a

double). In addition, one of the following applies:

• The previous value or value of other variables are not considered,

so there is only one machine operation

• or the exact outcome does not matter (adding when only the

general amount matters, setting to a non-zero value)

if (a[i]==-1){

printf("a[%d] is negative",ONE(i));

*there_is_a_negative_value=1;

continue;

}

March 15, 2009 OpenMP Usage Slide 16

Orna Agmon Ben-Yehuda ladypine - haifux.org

Breaking out

• Breaking out of pll loops is not allowed and will not compile in

gcc.

• A continue can replace many breaks, pending on the probabilities

known to programmer.

• An exit using a wrapper function will not be identified at compile

time, but results will be undefined.

• If exit data is important, better to collect status in a variable

and exit at the end of the loop.

• Need to treat the possibility that more than one thread reaches a

certain error state.

March 15, 2009 OpenMP Usage Slide 17

Orna Agmon Ben-Yehuda ladypine - haifux.org

max

Sadly, there is no reduction in openMP for min, max operations.

A maxself operation on a shared variable must be protected. The

following is not safe:

#define maxself(a,b) a=(a>b)?a:b;

maxself (amax,part[i].a);

March 15, 2009 OpenMP Usage Slide 18

Orna Agmon Ben-Yehuda ladypine - haifux.org

Protecting max

• By code protection (openMP way):

OMP(omp critical (a))

{

maxself (a_max,part[i].a);

}

• No data locks, so we lock as little as possible, success oriented:

if (a_max<part[i].a)

OMP(omp critical (a_max))

maxself (a_max,part[i].a);

March 15, 2009 OpenMP Usage Slide 19

Orna Agmon Ben-Yehuda ladypine - haifux.org

Less locks - Success oriented

The lock is taken when there is a suspicion for a need, and then,

when nobody can change its value, the estimation is done again.

• This behavior fits a max out of randomly ordered data.

• Worst case: 2N checks+N locks - achieved on increasing data

• Best case: N checks +1 lock - achieved on decreasing data

March 15, 2009 OpenMP Usage Slide 20

Orna Agmon Ben-Yehuda ladypine - haifux.org

GBL - Great Big Lock

• GBL Take the global (unnamed) lock at first, whenever there is

danger.

• Ensure correctness.

• What about performance?

• How much work will it be to split the lock later on?

• How much more chances for mistakes, to split the lock later,

given the programmer is currently most familiar with the specific

part of the code, and the work is performed in stages anyway?

March 15, 2009 OpenMP Usage Slide 21

Orna Agmon Ben-Yehuda ladypine - haifux.org

Parallelization level - inner loops

Parallelization can take place in different levels (inner/outer loop,

extending the parallel command into dynamic context - over

functions). Parallelizing Inner loops:

• Enables more evenly distributed load

• Calls to threads are more often (overhead - results may even get

worse).

• Harder to trace the parallelization flow (how many time is the

function called? From what scopes?)

March 15, 2009 OpenMP Usage Slide 22

Orna Agmon Ben-Yehuda ladypine - haifux.org

Parallelization level -Alternatives:

• Start from the top down, and first make sure the upper loops are

parallel. Then it can be refined to inner loops.

• Use dynamic scheduling policies - overhead of calculating the

policy, but in bigger chunks.

• Mix master and work-sharing constructs in a larger parallel scope

March 15, 2009 OpenMP Usage Slide 23

Orna Agmon Ben-Yehuda ladypine - haifux.org

Cannot exit from a loop

Legacy code to exit from a most inner loop:

if (retval<0)

free_data1_structures(data1);/*internal treatment*/

goto FREE_INTERNALS;/*address out of the loops*/

New exit from loop:

int problem=0;

OMP(omp parallel for)

for (i=0; i < JMAX ; ++i){

if (unlikely(problem)) continue;

.../*error occured*/

if (retval<0)

free_data1_structures(data1);/*internal treatment*/

problem=1;/*no goto*/

March 15, 2009 OpenMP Usage Slide 24

Orna Agmon Ben-Yehuda ladypine - haifux.org

Using reduction for error catching

OMP(omp parallel for reduction(||:bad))

for (i = 0 ; i < (int)JMAX ; ++i){

if (unlikely(bad)) continue;

bad=func(i);

if (bad) printf("Problem with %d",i);

else if (func2(i)) bad=1;

}

if (bad) safely_end_run();

March 15, 2009 OpenMP Usage Slide 25

Orna Agmon Ben-Yehuda ladypine - haifux.org

Not Using Reduction

• When the lock seldom needs to be taken

• When code change is to be avoided - we want the code to be very

similar to previous code.

OMP(omp parallel for)

if (part->r>-1)

OMP(omp atomic)

++r_parts;

March 15, 2009 OpenMP Usage Slide 26

Orna Agmon Ben-Yehuda ladypine - haifux.org

top(1)

• Shift i (I) toggles Irix mode.

• On (default): %CPU is out of the current cpu the process uses,

which is pretty useless for smp (usually 100%).

• Off: %CPU is out of the total cpu power.

• A common mistake is to consider cpu usage as signifying success -

PID USER PR NI RES SHR S %CPU %MEM TIME+ COMMAND

30 orna 15 0 7m 188 S 71.0 2.0 6:22.02 mypllm

1 root 16 0 660 556 S 0.0 0.0 0:02.10 init

These top results (Irix mode off) only means the application does

run in pll, consuming 142% CPU (out of 200%). It does not

mean it is more efficiency nor faster than the scalar application.

March 15, 2009 OpenMP Usage Slide 27

Orna Agmon Ben-Yehuda ladypine - haifux.org

time(1)

• The basic profiling tool is time(1), which provides a bottom line.

• On small workloads, the overhead means that the more

parallelization, the less you achieve:

> time /orna/mypll_more > & batch

2.478u 5.008s 0:13.06 57.1% 0+0k 0+0io 0pf+0w

> time /orna/mypll_less > & batch

1.984u 3.595s 0:11.41 48.8% 0+0k 0+0io 0pf+0w

March 15, 2009 OpenMP Usage Slide 28

Orna Agmon Ben-Yehuda ladypine - haifux.org

Uniting Parallel Parts more Efficiently

OMP(omp parallel)

{

OMP(omp for nowait)

for (i=0; i < JMAX ; ++i){

/*something that has nothing to do with the next loop*/

}

/*Indepent of previous task, no barrier needed*/

OMP(omp for)

for (i=0; i < JMAX ; ++i){

/*this is an individual task, no barrier needed*/

}

/*here we already need threads to cync*/

}

March 15, 2009 OpenMP Usage Slide 29

