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GCC -
mips

® Free Software Foundation
® Multi-platform
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GCC

©® Open Source
Download from gcc.gnu.org

© Multi-platform

€ 2.1 million lines of code, 15 years of development

® How does it work
@® svn
® mailing list: gcc-patches@gcc.gnu.org
® steering committee, maintainers
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GCC

® Who’s involved
@®Volunteers
®Linux distributors (RedHat, Suse...) BladeGenter /520
®Code Sourcery, AdaCore...
®1BM, HP, Intel, Apple... .
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Linux on Power

Open, powerful and affordable,
a kay to innovation
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front-end

A 4

parse trees

middle-end

generic trees

back-end
RTL

Assignment
statement

:




@ | IBM Haifa Research Lab

GCC Passes GCC 4.5
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GCC Passes
front-end & IPO © The Haifa team:
0 ar:;] irees ®CP ® Olga Golovanevsky
P @ Aliasing @ Razya Ladelsky
&D | ® Dorit Nuzman
ata layout ® Mircea Namolaru
' © Vectorization 2 '\;_a tROienl k
middle-end : ictor Kaplansky
generic trees © Graphite @ Roni Kupershtok
© Loop unrolling ® Sergei Dyshel
® Alon Dayan
<°> Scheduler ® Revital Eres
"""" & Modulo Scheduling ® Ayal Zaks
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Cell B.E. overview

The CELL processor consists of:

© Power Processor Element (PPE)

© 8 Synergistic Processor Elements (SPEs)
© Each SPE consists of:

® Memory flow controller (MFC) s’;‘ N —
e

@ Synergistic Process Unit (SPU) | e e e e e

% Supports a new SIMD instruction set. . fFeerd

K . : EIB {up to 96B/cycle]
© 128 SIMD vector registers, each 128 bits wide.# | = Z
£ pPE | | " ts8icyole ﬂ1mm
128 bits MIC BIC
-
=
128
vectors<




@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
© PPE address space support on SPE
© Supporting the overlay technique

€ Conclusions



@ | IBM Haifa Research Lab

What is vectorization

VF =4
VR1
VR2
VR3
VR4
VR5

Vector Registers

Data in Memory:

L O

U_L

e N
o w

® Data elements packed into vectors

@ Vector length > Vectorization Factor (VF)
© No Data Dependences

@ SIMD Architectural Capabilities

o
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d
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(b) @om VR1 )
(c) Vector operation
(d)

vectorization
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Vectorization for SPE

® Why vectorization is especially important for Cell SPU?
@ All instructions are SIMD instructions operating on vector registers.

@ Operations on scalar values are implemented using vector operations on vectors
holding the scalar in one “preferred” element.

@ Relatively low overhead in transfers between vector and scalar data as both reside
in the same vector register file.

128 bits

It is therefore highly importantto - @

maximize vector code generation
for the Cell SPEs.

128 <
vectors
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Outer loop vectorization

© loop-nest:
for(i=0; i<N; i++){
for (j=0; j<M; j++X
}a[i][]'] = a[i]ij] + bli][l;
bs

Outer-Loop Vectorization
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Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences

for (i =
for (j
alillj+1] = a[ilj

}

}
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Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences
® Non-Associative Reduction

:|out[0
:jout[1
:jout[2
:lout[3

W N = O

L1 L1 L1 L __1I

=fin[0]

H

in[1]

+in[2]+in[3]+Hin[4]+in[5]+in[6]+...

sO [s1 [s2 |s3 —  sum

in[1]
in[2]
in[3]

J

in[2]
in[3]

+in[3]+in[4]+in[5]+in[6]+in[7]+...
+in[4]+in[5]+in[6]+in[7]+in[8]+...

in[4]

+in[5]+in[6]+in[7]+in[8]+in[9]+...

for(i=0;i<N;i++){

float sum

=0;

Innermost-Loop Vectorization
for(i=0;i<N;i++){
float vector vsum = [0...0];

for (j =0;j<M;j++){ for(=0;j<M/4;j++){
sum +=in[j+i];

}

out[i] = sum;

}

vsum += in[j+i:j+3+i];
}
sum = reduce(vsum)
out[i] = sum;

Outer-Loop Vectorization
for(i=0;i<N/4; i++){
float vector vsum = [0...0];
forG=0;j<M; j++){
vsum += in[j+i:j+i+3];
by
out[i:i+3] = vsum;

}
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Outer-Loop Vectorization: Why?

® Profitabilty
® Elimination of reduction epilog overhead
@ Larger portion of the code vectorized
© More register reuse, less memory bandwidth

Innermost-Loop Vectorization Outer-Loop Vectorization

for(i=0;i<N;i++){ for(i=0;i<N;i++){ for(i=0;i<N/4; i++){
float sum = 0; float sum = 0; float vsum = 0;
forG=0;j<M; j++){ for(j=0;j<M/4;j++){ forG=0;j<M; j++){
sum +=in[j+i]; vsum += in[j+i:j+3+i]; vsum += in[j+i:j+i+3];
} } by
out[i] = sum; sum = reduce(vsum) out[i:i+3] = vsum;
} out[i] = sum; }
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Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses



@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

® Correctness
@ Cross iteration data-dependences
® Non-Associative Reduction
® Profitabilty
Elimination of reduction epilog overhead
Larger portion of the code vectorized
© More register reuse / less memory bandwidth
Loop vectorization may destroy perfect nests
Less “Per-loop” overheads
Longer iteration count in outer-loop
© Multimedia: short-trip innermost loops
Smaller strides on outer-loop level
© Better spatial locality in outer-loop
Unknown stride in innermost loop

® & V0O 9@
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Outer loop vectorization

@ Larger portion of the code vectorized

® More register reuse / less memory bandwidth
© In-Place Outer-Loop Vectorization for SIMD

® with realignment optimization

€ D. Nuzman, and A. Zaks, ’Outer-Loop Vectorization - Revisited for
Short SIMD Architectures”, PACT 2008
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Outer loop vectorization — Experimental results

CELL SPU: Performance impact

O scalar Oinner @ outer W outer-optimized

speedup

=2 = MW & @ =~ e W

interp_fp  interp  bkfir_fp bekfir dot sad  convolve alvinn MMM  geomean
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Outer loop vectorization — Experimental results

PowerPC970: Performance impact CELL SPU: Performance impact

| O seefar O inner E auter W aufe=apliimized | | O seafar O inner @ auter W auber=aptimizaed |

speedup
B = A 0 & o @ = @

ik

interp_f interp  okfir_fp  bkfr deot s8d conv  akinn MMM geomean
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Intra loop vectorization

@ Classic vectorization techniques exploit inter-iteration parallelism
do {

dst[0] ]IJJ(srm [0] + src2[0]) >> 1;

dst[1] ||= (src1[1] + src2[1]) >> 1;
dst[2] [|= (src1[2] + src2[2]) >> 1;
dst[3] & (src1[3] + src2[3]) >> 1;

_—
dst +=4; src1 +=4; src2 += 4;
} while (dst = NULL); Uncountable loop

SLP — straight line code vectorization - Larsen and Amarasinghe, 2000.
Loop-aware SLP - exploit both inter- and intra-iteration parallelism.

Ira Rosen, Dorit Nuzman, and Ayal Zaks, “Loop-based SLP”, GCC Developers' Summit
2007.

O Q@

27 |
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Intra loop vectorization - Experimental Results

CELL SPU: Performance impact

Speedup Factors for Different Input Sizes
Speedup

6

5

4

34
2 4
1
0

1000 10000 100000
Input Size
RGB to YIQ conversion

[Y] = 0.299 [R] + 0.587 [G] + 0.114 [B]
[I]=0.596 [R]-0.275 [G]-0.321 [B]
[Q] = 0.212 [R] - 0.523 [G] + 0.311 [B]
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Vectorization of Strided Accesses

9/1;\344mmDE F

a
extract )
enahoh
for (i=0; i<n; i++) {
extract | b[4i+0] = a[4i+0] + 5;
o b[4i+1] = a[4i+1] * 4;
AGE b[4i+2] = a[4i+2] >> 2;
l b[4i+3] = a[4i+3] / 3;
}
Interleave
igh
b




@ | IBM Haifa Research Lab

Vectorization of Strided Accesses

01 23 4567 8 9 ABCDEF

a
s for (i=0; i<n; i++) {
_' o — - b[4i+0] = a[4i+0]
b[4i+1] = a[4i+1]
b[4i+2] = a[4i+2]
© Supports vectorization of non-unit stride memory b[4i+3] = a[41+3]

accesses, with power-of-2 strides.

% "Auto-Vectorization of Interleaved Data for SIMD",
Dorit Nuzman, Ira Rosen, and Ayal Zaks, PLDI 2006.

}

+ 5;
* 4;
>> 2;

[ 3;
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Vectorization of Strided Accesses - Experimental Results

CELL SPU: Performance impact

Speedup Factors on Interleaved Data

A

iZ2 4 i3 2 4 08

rgbalargh_uf

id it

ig

alpha_gray_ocvi_u owt_codec_ud SoftE8niPack_uw32 interp_s16

Benchmarks and Interleaving Levels
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PPE Address Space Support on SPE

® Load and store instructions of an SPE
access a local store of 256KB private to
the SPE.

©® DMA operations provided by the MFC
enable the SPE to copy data between r \”r mﬁ”@‘ ‘@‘r@ ‘F"r‘” ‘F’*‘” ‘F’*‘”
its local store and main storage. P e el e e e e e
foserod | il e T 11 13

— . EIB {up fo 96Bicycle J
inline void 16Bleycle

dma_ls_to_mem (unsigned int mem_addr, LR B D

volatile void *Is_addr,

unsigned int size)

{
unsigned int tag = 0;
unsigned int mask = 1;

mfc_put (Is_addr, mem_addr, size, tag, 0, 0);
mfc_write_tag_mask (mask);
mfc_read_tag_status_all ();

}

Source: M. Gechwing ef al., Hot Chips-17, Augusf 2005
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PPE Address Space Support on SPE

©® GCC was extended to enable accessing PPE memory from SPE without
explicitly executing DMA operations.

@ Following the embedded extension to C programming language.
® GCC was extended to supports multiple address spaces.

@ This extension permits variables to be qualified as belonging to a specific
address space by tagging their type with an identifier recognized by the
compiler.

® The compiler can then synthesize code to access variables in these other
address spaces.

@ A software-managed data cache was developed to improve performance of
programs accessing variables in the PPE address space.

® configurable cache size chosen by thg iniine void )

dma Is to_mem (__ea int *ppe_variable, int *Is_addr)

the SPU prOQ ram. #include <spu_cache.h>

cache_fetch(_ea)
cache_evict (_ea)
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Supporting the overlay technique

® The limited amount of local store directly
imposes a severe constraint on the code-
size of SPE programs.

Large programs may not fit the local store.
Therefore, the toolchain was extended to

support overlay technique: = — %mw
@ Partition the code into multiple pieces, ﬁr—‘mmﬁm ”?

each sufficiently small in size, which e e o |
will be swapped in and out of the local |7
store at runtime.

@
N

EIB {up to 96B/cycle)
= =

16Bleycle ﬂﬁmquem

Source: M. Gechwind ef al,, Hot Chips-17, Augusf 2005

37 |
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Supporting the overlay technique cont.

Region 0
SA
| Root
segment 0
SA
| |
Region 1 } |
SC segment 1
SG segment 4
Cedion 2 [~
egion SA
| > segment 2 SF segment 3
SA T
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Supporting the overlay technique cont.

@ Preparing code for overlay management consists of a static preprocessing stage which is
done by the compiler and linker.

@ The compiler first partition the code into sections of maximum size.
® It can break functions if needed.
<& Avoid splitting critical sections.
<& Try not breaking loops.
@ The linker construct the overlaid program from the sections.

® replaces each branch or call which leads to a new segment by a stub which
transfers the control to an overlay loading routine during execution.

OVERLAY {
.segmentl {./sc.o(.text)}
.segmentd {./sg.o(.text)}

1

OVERLAY {
.segment? {./sd.o(.text) ./se.o(.text)}
.segment3 {./sf.o(.text)}

}
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Conclusions

® The Cell Broadband Engine provides unique computational opportunities
yet poses new challenges for tool-chains.

® Our collaborative effort to address some of the challenges in GCC and
GNU Id includes:

® Support the overlay technique to overcome the local store
constraint on programs code size.

® Support extension to the C language to access variables in main
memory from the SPU to avoid explicit DMA operations.

@ Autovectorization extensions:

© Innovative vectorization opportunities beyond inner-most loops and
stride accesses, traditionally considered too costly.



IBMers at the GCC Summit, 2007, Ott ”

Ayal Zaks ' Dorit Nuzman lIJIBIII;I/Ic; Wsllgand R Revital Eres
IBM Haifa IBM Haifa oevlingen IBM Haifa

German
Israel Israel y Israel

Alan Modra

IBM Canberra
Australia

David Edelsohn Ben Elliston [fEi& Ira Rosen
IBM Watson IBM Canberra IBM Haifa
U.S.A Australia  [§ Israel

Thanks!
Questions?
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Back-up slides
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XL relevant techniques

< Outer-Loop Vectorization in xlc - Eliminate Inner-Loop (Short-Loop
aggregation) - Wu, Eichenberger,Wang (2005)

® SLPin xlc —Wu et al., ICS (2005)

€ Overlay support in xlc - the basic unit of partitioning is a function; use
outlining to create smaller functions - A. E. Eichenberger et al., "Using
advanced compiler technology to exploit the performance of the Cell
Broadband Engine architecture”, IBM Systems Journal (2006).
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Auto-Vectorization in GCC

@ Classic vectorization techniques exploit inter-iteration parallelism

for i

{

a2i] || “1-1 replace”

a[2i+1]

loop-based
vectorization
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Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences

for (i =
for (j
alillj+1] = a[ilj

}

}
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Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences
® Non-Associative Reduction

:|out[0
:jout[1
:jout[2
:lout[3

W N = O

L1 L1 L1 L __1I

=fin[0]

H

in[1]

+in[2]+in[3]+Hin[4]+in[5]+in[6]+...

sO [s1 [s2 |s3 —  sum

in[1]
in[2]
in[3]

J

in[2]
in[3]

+in[3]+in[4]+in[5]+in[6]+in[7]+...
+in[4]+in[5]+in[6]+in[7]+in[8]+...

in[4]

+in[5]+in[6]+in[7]+in[8]+in[9]+...

for(i=0;i<N;i++){

float sum

=0;

Innermost-Loop Vectorization
for(i=0;i<N;i++){
float vector vsum = [0...0];

for (j =0;j<M;j++){ for(=0;j<M/4;j++){
sum +=in[j+i];

}

out[i] = sum;

}

vsum += in[j+i:j+3+i];
}
sum = reduce(vsum)
out[i] = sum;

Outer-Loop Vectorization
for(i=0;i<N/4; i++){
float vector vsum = [0...0];
forG=0;j<M; j++){
vsum += in[j+i:j+i+3];
by
out[i:i+3] = vsum;

}
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Outer-Loop Vectorization: Why?

® Profitabilty
® Elimination of reduction epilog overhead
@ Larger portion of the code vectorized
© More register reuse, less memory bandwidth

Innermost-Loop Vectorization Outer-Loop Vectorization

for(i=0;i<N;i++){ for(i=0;i<N;i++){ for(i=0;i<N/4; i++){
float sum = 0; float sum = 0; float vsum = 0;
forG=0;j<M; j++){ for(j=0;j<M/4;j++){ forG=0;j<M; j++){
sum +=in[j+i]; vsum += in[j+i:j+3+i]; vsum += in[j+i:j+i+3];
} } by
out[i] = sum; sum = reduce(vsum) out[i:i+3] = vsum;
} out[i] = sum; }
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Outer-Loop Vectorization: Why?

® Correctness
@ Cross iteration data-dependences
® Non-Associative Reduction
® Profitabilty
Elimination of reduction epilog overhead
Larger portion of the code vectorized
© More register reuse / less memory bandwidth
Loop vectorization may destroy perfect nests
Less “Per-loop” overheads
Longer iteration count in outer-loop
© Multimedia: short-trip innermost loops
Smaller strides on outer-loop level
© Better spatial locality in outer-loop
Unknown stride in innermost loop

® & V0O 9@
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In-Place Outer-Loop Vectorization for SIMD
with relalignment optimization

i=0: out[0]=in[O]Hi in[4]+in[5]+in[6]+...
i=1: out[1]5in[1]Hi in[5]+in[6]+in[7]+...
i=2: out[2]=in[2]Hi in[6]+in[7]+in[8]+...
i=3: out[3]5in[3]Hi in[7]+in[8]+in[9]+...
i=4: out[4]=In +in[8]+in[9]+...

i=5: out[5]=in[5]+in[6]+in[7]+in[8]+in[9]+in[10]+...

i=6: out[6]=in[6]+iN[7]+IN[8]+IN[9]+in[10]+in[11]+...
i=7: out[7]=in[7]+in[8]+in[9]+in[10]+in[11]+in[12]+...

for(i=0;i<N;i++){

© Changing misalignment float sum = 0;

for(j =0;j<M;j++){
| | | um + LG
in!0]1|1][|g]|3!I4I[5]|6|[71[8][9][10][11][12].... }
memory out[i] = sum;
mis=0,1,2,3,0,1,2,3,... ¥
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ace Outer-Loop Vectorization for SIIMD with realignment
Optlmlzatlon — Cont. p = &x[4*i]; p = &x[4*i];
Loop: mis = p & 0x3;
mis = p & 0x3 vl = vload (|p]);
vl = vload (|p]); Loop:
v2 = vioad (|p+4|); v2 = vioad (|p+4|);
t = realign (v1,v2,mis); t = realign (v1,v2,mis);
p+=4; p+=1; vl = v2;
if ... goto Loop; if ... goto Loop;
Unoptimized realignment Optimized (fixed misalignment)

abcd ef gh 1 j kIl m‘nop

cldef ghij kIl mn

abcdefghijklm‘nop

Data in Memori
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ace OQuter-Loop Vectorization for SIIVID with realignment
optlmlzatlon — Cont. p = &x[4*i];
misO = p&Ux3;

p = &x[4*i]; misl = 4B #1 elmnt
Loop: mis2 = 8B #2 elmnts

mis = p & 0x3 mis3 = 12B #3 elmnts

vl = vload ; vl = vload (|p]);

V2 = vioad E:EB«); unrollby V/step | v2 = vioad (|p|+4);

t = realign (v1,v2,mis); t0 = realign (v1,v2,mis0);

..uset .. Loop:

p+=4; v3 = vload (|p|+8);

if ...< goto Loop; t00 = realign (vZ,v3,mis0);

t1 = realign (t0,t00,mis1);
t2 = realign (t0,t00,mis2);

® Changing misalignment B = ret?)"gn (0,t00,mis3);
‘ | ‘ ... Use

use ti

in}O]ﬂl]@][31[4][5][6][7{[8][9][10][11][12]---- uset? ..
... use 3 ...

p+=4; v2=v3; t0=t00;
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Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses
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Intra loop vectorization

@ Classic vectorization techniques exploit inter-iteration parallelism

0]
1]
2]
3]

+ Src2

+ Src2
+ src2

0]
+ src2[1]
2]
3]

) >>1;

D) >>1;

) >>1;
) >>1;

do {
[ dst[0] Ik (srct
dst[1] ||= (srct
dst[2] || (srct
dst[3] [= (srcT
} while (dst 1= NULL);

dst += 4; src1 += 4; src2 +=4;

Uncountable loop

® SLP - straight line code vectorization - Larsen and Amarasinghe, 2000

@ Loop-aware SLP - exploit both inter- and intra-iteration parallelism.
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Vectorization of Strided Accesses
01 2 3 456 7 8 9 ABCDEF

= = for (i=0; i<n; i++) {
R NS b[4i+0] = a[4i+0] + 5;
_ * > fT b[4i+1] = a[4i+1] + 4;
F 4 2 3 IS 4 2 3|15 4 2 3||5 4 23 b[4i+2] = a[4i+2] + 2;
| | | | b[4i+3] = a[4i+3] + 3;
. }
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Intra loop vectorization

Speedup Factors for Different Input Sizes
Speedup
6
5
4
3
2
.1
0
1000 10000 100000
Input Size

RGB to YIQ conversion
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Experimental Results

Cell SPU: performance impact of vectorization
O scalar Oinner M outer W outer-optimized
speedup
9
&
g
6
2
4
3
2
1
0 . . . . . . . . .
interp_fp interp  bkfir_fp bkfir det sad  convolve alvinn MMM  geomean
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What is vectorization

o ©
E_L
e N
o w
O

VR1 P(a

(a)
VR2
(b)
VB3 @OP( VR1 )
(c) Vector operation
(

O
<

o
5

VR4 autovectorization

VRS OP(d)

Vector Registers

< Data elements packed into vectors
Data in Memory:

abcdefghijklm‘nop
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Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses



