Compiling Effectively for Cell B.E. with GCC

Ira Rosen IBM Haifa Research Lab

David Edelsohn IBM T.J.Watson Research Center
Ben Elliston IBM Australia Development Lab
Revital Eres IBM Haifa Research Lab

Alan Modra IBM Australia Development Lab
Dorit Nuzman IBM Haifa Research Lab

Ulrich Weigand IBM Deutschland Entwicklung GmbH
Ayal Zaks IBM Haifa Research Lab

IBM Haifa Research Lab

@ | IBM Haifa Research Lab

Talk layout

©® Background: GCC
® HRL and GCC
©® Compiling Effectively for Cell B.E. with GCC
® Cell B.E. overview
® Auto-vectorization enhancements
® PPE address space support on SPE
® Supporting the overlay technique
® Conclusions

@ | IBM Haifa Research Lab

Talk layout

©® Background: GCC
® HRL and GCC
€ Compiling Effectively for Cell B.E. with GCC
@ Cell B.E. overview
® Auto-vectorization enhancements
® PPE address space support on SPE
@ Supporting the overlay technique
® Conclusions

@ | IBM Haifa Research Lab

GCC -
mips

® Free Software Foundation
® Multi-platform

\\\\\\\um//{{/
=

BladeCenter JS20

- E
IBM @ server BladeCenter ITANILIM

@ | IBM Haifa Research Lab

GCC

©® Open Source
Download from gcc.gnu.org

© Multi-platform

€ 2.1 million lines of code, 15 years of development

® How does it work
@® svn
® mailing list: gcc-patches@gcc.gnu.org
® steering committee, maintainers

@ | IBM Haifa Research Lab

GCC

® Who’s involved
@®Volunteers
®Linux distributors (RedHat, Suse...) BladeGenter /520
®Code Sourcery, AdaCore...
®1BM, HP, Intel, Apple... .

\\\\|IW/

N2
i:
3-
RN

mzm\\m""\\s

2
ITA I'-J IL-' M

Linux on Power

Open, powerful and affordable,
a kay to innovation

@ | IBM Haifa Research Lab

front-end

A 4

parse trees

middle-end

generic trees

back-end
RTL

Assignment
statement

:

@ | IBM Haifa Research Lab

GCC Passes GCC 4.5

~

front-end | generic trees _
parse trees : “ misc opts

v
loop optimizations

gimple trees
¥

middle-end v v

generic trees SSA optimizations vectorization

Out of SSA loop opts

gimple trees .
v ~.| misc opts

\ 4

RTL| Imachine- . 4
achine = |, generic trees
degcripdion

@ | IBM Haifa Research Lab

GCC Passes
front-end & IPO © The Haifa team:
0 ar:;] irees ®CP ® Olga Golovanevsky
P @ Aliasing @ Razya Ladelsky
&D | ® Dorit Nuzman
ata layout ® Mircea Namolaru
' © Vectorization 2 '\;_a tROienl k
middle-end : ictor Kaplansky
generic trees © Graphite @ Roni Kupershtok
© Loop unrolling ® Sergei Dyshel
® Alon Dayan
<°> Scheduler ® Revital Eres
"""" & Modulo Scheduling ® Ayal Zaks

*
.

back-end

RTL| Imachine € Power7
description

@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
© PPE address space support on SPE
® Supporting the overlay technique

® Conclusions

@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
€ PPE address space support on SPE
© Supporting the overlay technique

€ Conclusions

@ | IBM Haifa Research Lab

Cell B.E. overview

The CELL processor consists of:

© Power Processor Element (PPE)

© 8 Synergistic Processor Elements (SPEs)
© Each SPE consists of:

® Memory flow controller (MFC) s’;‘ N —
e

@ Synergistic Process Unit (SPU) | e e e e e

% Supports a new SIMD instruction set. . fFeerd

K . : EIB {up to 96B/cycle]
© 128 SIMD vector registers, each 128 bits wide.# | = Z
£ pPE | | " ts8icyole ﬂ1mm
128 bits MIC BIC
-
=
128
vectors<

@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
© PPE address space support on SPE
© Supporting the overlay technique

€ Conclusions

@ | IBM Haifa Research Lab

What is vectorization

VF =4
VR1
VR2
VR3
VR4
VR5

Vector Registers

Data in Memory:

L O

U_L

e N
o w

® Data elements packed into vectors

@ Vector length > Vectorization Factor (VF)
© No Data Dependences

@ SIMD Architectural Capabilities

o
5

d

(a)

(b) @om VR1)
(c) Vector operation
(d)

vectorization
d

O O O
U T T

abc

d

€

f

g

lm‘nop

@ | IBM Haifa Research Lab

Vectorization for SPE

® Why vectorization is especially important for Cell SPU?
@ All instructions are SIMD instructions operating on vector registers.

@ Operations on scalar values are implemented using vector operations on vectors
holding the scalar in one “preferred” element.

@ Relatively low overhead in transfers between vector and scalar data as both reside
in the same vector register file.

128 bits

It is therefore highly importantto - @

maximize vector code generation
for the Cell SPEs.

128 <
vectors

@ | IBM Haifa Research Lab

Talk outline

@ Cell B.E. overview
® Auto-vectorization enhancements
——> & Quter loop vectorization

@ Intra loop vectorization

® Vectorization of Strided Accesses
@ PPE address space support on SPE
@ Supporting the overlay technique
€ Conclusions

@ | IBM Haifa Research Lab

Outer loop vectorization

© loop-nest:
for(i=0; i<N; i++){
for (j=0; j<M; j++X
}a[i][]'] = a[i]ij] + bli][l;
bs

Outer-Loop Vectorization

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences

for (i =
for (j
alillj+1] = a[ilj

}

}

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences
® Non-Associative Reduction

:|out[0
:jout[1
:jout[2
:lout[3

W N = O

L1 L1 L1 L __1I

=fin[0]

H

in[1]

+in[2]+in[3]+Hin[4]+in[5]+in[6]+...

sO [s1 [s2 |s3 — sum

in[1]
in[2]
in[3]

J

in[2]
in[3]

+in[3]+in[4]+in[5]+in[6]+in[7]+...
+in[4]+in[5]+in[6]+in[7]+in[8]+...

in[4]

+in[5]+in[6]+in[7]+in[8]+in[9]+...

for(i=0;i<N;i++){

float sum

=0;

Innermost-Loop Vectorization
for(i=0;i<N;i++){
float vector vsum = [0...0];

for (j =0;j<M;j++){ for(=0;j<M/4;j++){
sum +=in[j+i];

}

out[i] = sum;

}

vsum += in[j+i:j+3+i];
}
sum = reduce(vsum)
out[i] = sum;

Outer-Loop Vectorization
for(i=0;i<N/4; i++){
float vector vsum = [0...0];
forG=0;j<M; j++){
vsum += in[j+i:j+i+3];
by
out[i:i+3] = vsum;

}

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

® Profitabilty
® Elimination of reduction epilog overhead
@ Larger portion of the code vectorized
© More register reuse, less memory bandwidth

Innermost-Loop Vectorization Outer-Loop Vectorization

for(i=0;i<N;i++){ for(i=0;i<N;i++){ for(i=0;i<N/4; i++){
float sum = 0; float sum = 0; float vsum = 0;
forG=0;j<M; j++){ for(j=0;j<M/4;j++){ forG=0;j<M; j++){
sum +=in[j+i]; vsum += in[j+i:j+3+i]; vsum += in[j+i:j+i+3];
} } by
out[i] = sum; sum = reduce(vsum) out[i:i+3] = vsum;
} out[i] = sum; }

@ | IBM Haifa Research Lab

Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

® Correctness
@ Cross iteration data-dependences
® Non-Associative Reduction
® Profitabilty
Elimination of reduction epilog overhead
Larger portion of the code vectorized
© More register reuse / less memory bandwidth
Loop vectorization may destroy perfect nests
Less “Per-loop” overheads
Longer iteration count in outer-loop
© Multimedia: short-trip innermost loops
Smaller strides on outer-loop level
© Better spatial locality in outer-loop
Unknown stride in innermost loop

® & V0O 9@

@ | IBM Haifa Research Lab

Outer loop vectorization

@ Larger portion of the code vectorized

® More register reuse / less memory bandwidth
© In-Place Outer-Loop Vectorization for SIMD

® with realignment optimization

€ D. Nuzman, and A. Zaks, ’Outer-Loop Vectorization - Revisited for
Short SIMD Architectures”, PACT 2008

@ | IBM Haifa Research Lab

Outer loop vectorization — Experimental results

CELL SPU: Performance impact

O scalar Oinner @ outer W outer-optimized

speedup

=2 = MW & @ =~ e W

interp_fp interp bkfir_fp bekfir dot sad convolve alvinn MMM geomean

@ | IBM Haifa Research Lab

Outer loop vectorization — Experimental results

PowerPC970: Performance impact CELL SPU: Performance impact

| O seefar O inner E auter W aufe=apliimized | | O seafar O inner @ auter W auber=aptimizaed |

speedup
B = A 0 & o @ = @

ik

interp_f interp okfir_fp bkfr deot s8d conv akinn MMM geomean

@ | IBM Haifa Research Lab

Talk outline

@ Cell B.E. overview
® Auto-vectorization enhancements
——> & Outer loop vectorization

@ Intra loop vectorization

® Vectorization of Strided Accesses
@ PPE address space support on SPE
@ Supporting the overlay technique
€ Conclusions

@ | IBM Haifa Research Lab

Intra loop vectorization

@ Classic vectorization techniques exploit inter-iteration parallelism
do {

dst[0]]IJJ(srm [0] + src2[0]) >> 1;

dst[1] ||= (src1[1] + src2[1]) >> 1;
dst[2] [|= (src1[2] + src2[2]) >> 1;
dst[3] & (src1[3] + src2[3]) >> 1;

_—
dst +=4; src1 +=4; src2 += 4;
} while (dst = NULL); Uncountable loop

SLP — straight line code vectorization - Larsen and Amarasinghe, 2000.
Loop-aware SLP - exploit both inter- and intra-iteration parallelism.

Ira Rosen, Dorit Nuzman, and Ayal Zaks, “Loop-based SLP”, GCC Developers' Summit
2007.

O Q@

27 |

@ | IBM Haifa Research Lab

Intra loop vectorization - Experimental Results

CELL SPU: Performance impact

Speedup Factors for Different Input Sizes
Speedup

6

5

4

34
2 4
1
0

1000 10000 100000
Input Size
RGB to YIQ conversion

[Y] = 0.299 [R] + 0.587 [G] + 0.114 [B]
[I]=0.596 [R]-0.275 [G]-0.321 [B]
[Q] = 0.212 [R] - 0.523 [G] + 0.311 [B]

@ | IBM Haifa Research Lab

Talk outline

@ Cell B.E. overview
® Auto-vectorization enhancements
® Outer loop vectorization
——> & Intra loop vectorization
® Vectorization of Strided Accesses
@ PPE address space support on SPE
@ Supporting the overlay technique
€ Conclusions

@ | IBM Haifa Research Lab

Vectorization of Strided Accesses

9/1;\344mmDE F

a
extract)
enahoh
for (i=0; i<n; i++) {
extract | b[4i+0] = a[4i+0] + 5;
o b[4i+1] = a[4i+1] * 4;
AGE b[4i+2] = a[4i+2] >> 2;
l b[4i+3] = a[4i+3] / 3;
}
Interleave
igh
b

@ | IBM Haifa Research Lab

Vectorization of Strided Accesses

01 23 4567 8 9 ABCDEF

a
s for (i=0; i<n; i++) {
_' o — - b[4i+0] = a[4i+0]
b[4i+1] = a[4i+1]
b[4i+2] = a[4i+2]
© Supports vectorization of non-unit stride memory b[4i+3] = a[41+3]

accesses, with power-of-2 strides.

% "Auto-Vectorization of Interleaved Data for SIMD",
Dorit Nuzman, Ira Rosen, and Ayal Zaks, PLDI 2006.

}

+ 5;
* 4;
>> 2;

[3;

@ | IBM Haifa Research Lab

Vectorization of Strided Accesses - Experimental Results

CELL SPU: Performance impact

Speedup Factors on Interleaved Data

A

iZ2 4 i3 2 4 08

rgbalargh_uf

id it

ig

alpha_gray_ocvi_u owt_codec_ud SoftE8niPack_uw32 interp_s16

Benchmarks and Interleaving Levels

@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
€ PPE address space support on SPE
© Supporting the overlay technique

€ Conclusions

@ | IBM Haifa Research Lab

PPE Address Space Support on SPE

® Load and store instructions of an SPE
access a local store of 256KB private to
the SPE.

©® DMA operations provided by the MFC
enable the SPE to copy data between r \”r mﬁ”@‘ ‘@‘r@ ‘F"r‘” ‘F’*‘” ‘F’*‘”
its local store and main storage. P e el e e e e e
foserod | il e T 11 13

— . EIB {up fo 96Bicycle J
inline void 16Bleycle

dma_ls_to_mem (unsigned int mem_addr, LR B D

volatile void *Is_addr,

unsigned int size)

{
unsigned int tag = 0;
unsigned int mask = 1;

mfc_put (Is_addr, mem_addr, size, tag, 0, 0);
mfc_write_tag_mask (mask);
mfc_read_tag_status_all ();

}

Source: M. Gechwing ef al., Hot Chips-17, Augusf 2005

@ | IBM Haifa Research Lab

PPE Address Space Support on SPE

©® GCC was extended to enable accessing PPE memory from SPE without
explicitly executing DMA operations.

@ Following the embedded extension to C programming language.
® GCC was extended to supports multiple address spaces.

@ This extension permits variables to be qualified as belonging to a specific
address space by tagging their type with an identifier recognized by the
compiler.

® The compiler can then synthesize code to access variables in these other
address spaces.

@ A software-managed data cache was developed to improve performance of
programs accessing variables in the PPE address space.

® configurable cache size chosen by thg iniine void)

dma Is to_mem (__ea int *ppe_variable, int *Is_addr)

the SPU prOQ ram. #include <spu_cache.h>

cache_fetch(_ea)
cache_evict (_ea)

@ | IBM Haifa Research Lab

Talk outline

©® Cell B.E. overview

® Auto-vectorization enhancements
© PPE address space support on SPE
® Supporting the overlay technique

€ Conclusions

@ | IBM Haifa Research Lab

Supporting the overlay technique

® The limited amount of local store directly
imposes a severe constraint on the code-
size of SPE programs.

Large programs may not fit the local store.
Therefore, the toolchain was extended to

support overlay technique: = — %mw
@ Partition the code into multiple pieces, ﬁr—‘mmﬁm ”?

each sufficiently small in size, which e e o |
will be swapped in and out of the local |7
store at runtime.

@
N

EIB {up to 96B/cycle)
= =

16Bleycle ﬂﬁmquem

Source: M. Gechwind ef al,, Hot Chips-17, Augusf 2005

37 |

@ | IBM Haifa Research Lab

Supporting the overlay technique cont.

Region 0
SA
| Root
segment 0
SA
| |
Region 1 } |
SC segment 1
SG segment 4
Cedion 2 [~
egion SA
| > segment 2 SF segment 3
SA T

@ | IBM Haifa Research Lab

Supporting the overlay technique cont.

@ Preparing code for overlay management consists of a static preprocessing stage which is
done by the compiler and linker.

@ The compiler first partition the code into sections of maximum size.
® It can break functions if needed.
<& Avoid splitting critical sections.
<& Try not breaking loops.
@ The linker construct the overlaid program from the sections.

® replaces each branch or call which leads to a new segment by a stub which
transfers the control to an overlay loading routine during execution.

OVERLAY {
.segmentl {./sc.o(.text)}
.segmentd {./sg.o(.text)}

1

OVERLAY {
.segment? {./sd.o(.text) ./se.o(.text)}
.segment3 {./sf.o(.text)}

}

@ | IBM Haifa Research Lab

Conclusions

® The Cell Broadband Engine provides unique computational opportunities
yet poses new challenges for tool-chains.

® Our collaborative effort to address some of the challenges in GCC and
GNU Id includes:

® Support the overlay technique to overcome the local store
constraint on programs code size.

® Support extension to the C language to access variables in main
memory from the SPU to avoid explicit DMA operations.

@ Autovectorization extensions:

© Innovative vectorization opportunities beyond inner-most loops and
stride accesses, traditionally considered too costly.

IBMers at the GCC Summit, 2007, Ott ”

Ayal Zaks ' Dorit Nuzman lIJIBIII;I/Ic; Wsllgand R Revital Eres
IBM Haifa IBM Haifa oevlingen IBM Haifa

German
Israel Israel y Israel

Alan Modra

IBM Canberra
Australia

David Edelsohn Ben Elliston [fEi& Ira Rosen
IBM Watson IBM Canberra IBM Haifa
U.S.A Australia [§ Israel

Thanks!
Questions?

@ | IBM Haifa Research Lab

Back-up slides

@ | IBM Haifa Research Lab

XL relevant techniques

< Outer-Loop Vectorization in xlc - Eliminate Inner-Loop (Short-Loop
aggregation) - Wu, Eichenberger,Wang (2005)

® SLPin xlc —Wu et al., ICS (2005)

€ Overlay support in xlc - the basic unit of partitioning is a function; use
outlining to create smaller functions - A. E. Eichenberger et al., "Using
advanced compiler technology to exploit the performance of the Cell
Broadband Engine architecture”, IBM Systems Journal (2006).

@ | IBM Haifa Research Lab

Auto-Vectorization in GCC

@ Classic vectorization techniques exploit inter-iteration parallelism

for i

{

a2i] || “1-1 replace”

a[2i+1]

loop-based
vectorization

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences

for (i =
for (j
alillj+1] = a[ilj

}

}

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

© Inner-most loop may not be vectorizable
@ Cross iteration data-dependences
® Non-Associative Reduction

:|out[0
:jout[1
:jout[2
:lout[3

W N = O

L1 L1 L1 L __1I

=fin[0]

H

in[1]

+in[2]+in[3]+Hin[4]+in[5]+in[6]+...

sO [s1 [s2 |s3 — sum

in[1]
in[2]
in[3]

J

in[2]
in[3]

+in[3]+in[4]+in[5]+in[6]+in[7]+...
+in[4]+in[5]+in[6]+in[7]+in[8]+...

in[4]

+in[5]+in[6]+in[7]+in[8]+in[9]+...

for(i=0;i<N;i++){

float sum

=0;

Innermost-Loop Vectorization
for(i=0;i<N;i++){
float vector vsum = [0...0];

for (j =0;j<M;j++){ for(=0;j<M/4;j++){
sum +=in[j+i];

}

out[i] = sum;

}

vsum += in[j+i:j+3+i];
}
sum = reduce(vsum)
out[i] = sum;

Outer-Loop Vectorization
for(i=0;i<N/4; i++){
float vector vsum = [0...0];
forG=0;j<M; j++){
vsum += in[j+i:j+i+3];
by
out[i:i+3] = vsum;

}

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

® Profitabilty
® Elimination of reduction epilog overhead
@ Larger portion of the code vectorized
© More register reuse, less memory bandwidth

Innermost-Loop Vectorization Outer-Loop Vectorization

for(i=0;i<N;i++){ for(i=0;i<N;i++){ for(i=0;i<N/4; i++){
float sum = 0; float sum = 0; float vsum = 0;
forG=0;j<M; j++){ for(j=0;j<M/4;j++){ forG=0;j<M; j++){
sum +=in[j+i]; vsum += in[j+i:j+3+i]; vsum += in[j+i:j+i+3];
} } by
out[i] = sum; sum = reduce(vsum) out[i:i+3] = vsum;
} out[i] = sum; }

@ | IBM Haifa Research Lab

Outer-Loop Vectorization: Why?

® Correctness
@ Cross iteration data-dependences
® Non-Associative Reduction
® Profitabilty
Elimination of reduction epilog overhead
Larger portion of the code vectorized
© More register reuse / less memory bandwidth
Loop vectorization may destroy perfect nests
Less “Per-loop” overheads
Longer iteration count in outer-loop
© Multimedia: short-trip innermost loops
Smaller strides on outer-loop level
© Better spatial locality in outer-loop
Unknown stride in innermost loop

® & V0O 9@

@ | IBM Haifa Research Lab

In-Place Outer-Loop Vectorization for SIMD
with relalignment optimization

i=0: out[0]=in[O]Hi in[4]+in[5]+in[6]+...
i=1: out[1]5in[1]Hi in[5]+in[6]+in[7]+...
i=2: out[2]=in[2]Hi in[6]+in[7]+in[8]+...
i=3: out[3]5in[3]Hi in[7]+in[8]+in[9]+...
i=4: out[4]=In +in[8]+in[9]+...

i=5: out[5]=in[5]+in[6]+in[7]+in[8]+in[9]+in[10]+...

i=6: out[6]=in[6]+iN[7]+IN[8]+IN[9]+in[10]+in[11]+...
i=7: out[7]=in[7]+in[8]+in[9]+in[10]+in[11]+in[12]+...

for(i=0;i<N;i++){

© Changing misalignment float sum = 0;

for(j =0;j<M;j++){
| | | um + LG
in!0]1|1][|g]|3!I4I[5]|6|[71[8][9][10][11][12].... }
memory out[i] = sum;
mis=0,1,2,3,0,1,2,3,... ¥

@ | IBM Haifa Research Lab E =5

ace Outer-Loop Vectorization for SIIMD with realignment
Optlmlzatlon — Cont. p = &x[4*i]; p = &x[4*i];
Loop: mis = p & 0x3;
mis = p & 0x3 vl = vload (|p]);
vl = vload (|p]); Loop:
v2 = vioad (|p+4|); v2 = vioad (|p+4|);
t = realign (v1,v2,mis); t = realign (v1,v2,mis);
p+=4; p+=1; vl = v2;
if ... goto Loop; if ... goto Loop;
Unoptimized realignment Optimized (fixed misalignment)

abcd ef gh 1 j kIl m‘nop

cldef ghij kIl mn

abcdefghijklm‘nop

Data in Memori

@ | IBM Haifa Research Lab E =5

ace OQuter-Loop Vectorization for SIIVID with realignment
optlmlzatlon — Cont. p = &x[4*i];
misO = p&Ux3;

p = &x[4*i]; misl = 4B #1 elmnt
Loop: mis2 = 8B #2 elmnts

mis = p & 0x3 mis3 = 12B #3 elmnts

vl = vload ; vl = vload (|p]);

V2 = vioad E:EB«); unrollby V/step | v2 = vioad (|p|+4);

t = realign (v1,v2,mis); t0 = realign (v1,v2,mis0);

..uset .. Loop:

p+=4; v3 = vload (|p|+8);

if ...< goto Loop; t00 = realign (vZ,v3,mis0);

t1 = realign (t0,t00,mis1);
t2 = realign (t0,t00,mis2);

® Changing misalignment B = ret?)"gn (0,t00,mis3);
‘ | ‘ ... Use

use ti

in}O]ﬂl]@][31[4][5][6][7{[8][9][10][11][12]---- uset? ..
... use 3 ...

p+=4; v2=v3; t0=t00;

@ | IBM Haifa Research Lab

Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses

@ | IBM Haifa Research Lab

Intra loop vectorization

@ Classic vectorization techniques exploit inter-iteration parallelism

0]
1]
2]
3]

+ Src2

+ Src2
+ src2

0]
+ src2[1]
2]
3]

) >>1;

D) >>1;

) >>1;
) >>1;

do {
[dst[0] Ik (srct
dst[1] ||= (srct
dst[2] || (srct
dst[3] [= (srcT
} while (dst 1= NULL);

dst += 4; src1 += 4; src2 +=4;

Uncountable loop

® SLP - straight line code vectorization - Larsen and Amarasinghe, 2000

@ Loop-aware SLP - exploit both inter- and intra-iteration parallelism.

@ | IBM Haifa Research Lab

Vectorization of Strided Accesses
01 2 3 456 7 8 9 ABCDEF

= = for (i=0; i<n; i++) {
R NS b[4i+0] = a[4i+0] + 5;
_ * > fT b[4i+1] = a[4i+1] + 4;
F 4 2 3 IS 4 2 3|15 4 2 3||5 4 23 b[4i+2] = a[4i+2] + 2;
| | | | b[4i+3] = a[4i+3] + 3;
. }

@ | IBM Haifa Research Lab

Intra loop vectorization

Speedup Factors for Different Input Sizes
Speedup
6
5
4
3
2
.1
0
1000 10000 100000
Input Size

RGB to YIQ conversion

@ | IBM Haifa Research Lab

Experimental Results

Cell SPU: performance impact of vectorization
O scalar Oinner M outer W outer-optimized
speedup
9
&
g
6
2
4
3
2
1
0
interp_fp interp bkfir_fp bkfir det sad convolve alvinn MMM geomean

@ | IBM Haifa Research Lab

What is vectorization

o ©
E_L
e N
o w
O

VR1 P(a

(a)
VR2
(b)
VB3 @OP(VR1)
(c) Vector operation
(

O
<

o
5

VR4 autovectorization

VRS OP(d)

Vector Registers

< Data elements packed into vectors
Data in Memory:

abcdefghijklm‘nop

57 |

@ | IBM Haifa Research Lab

Auto-Vectorization for SPE

for i for i for i
{ { {
al2i]
a[2i] a[2i]
a[2i+1] al2i+1] _ a[2i+1]
} } }
loop-based vectorization of

Ee _ loop-aware SLP
vectorization strided accesses

