
Advanced Debugging with gdb

David Khosid

Advanced Debugging with gdb

David KhosidDavid Khosid
Sept 21, 2009
david.kh@gmail.com

David Khosid
Sept 21, 2009
david.kh@gmail.com

Agenda

• Techniques for debugging big, modern software:

– STL containers and algorithms, Boost

Ex: how to see containers

– Signals

– Multi-threaded (ex.: how to follow a thread?)

– Repetitive tasks on the almost unchanging code base– Repetitive tasks on the almost unchanging code base

• Examples

2

GDB was first written by Richard Stallman

in 1986 as part of his GNU system

• Richard Stallman, “Debugging with gdb”

www.gnu.org/software/gdb/documentation

• Help: $gdb –h

(gdb) h

Sources of informationSources of information

(gdb) h

(gdb) apropos

Command names may be truncated if the

abbreviation is unambiguous. TAB completion.

• Command Cheat Sheet
www.yolinux.com/TUTORIALS/GDB-Commands.html

• Last GDB version is 6.8, new 7.0 soon: 2009-09-23 3

Item #1: C++ and STL - Containers

How to see container’s content?

1. Commands file, ex. .gdbinit
http://www.yolinux.com/TUTORIALS/src/dbinit_stl_views-1.03.txt

Limitations: a little

2. libstdc++ compiled in debug mode

Limitations: Limitations:

- different product , not for QA, not for client, not in

performance tuning stage

- performance

4

Item #1: C++ and STL - Containers

How to see container’s content?

3. Auxiliary functions
typedef map<string, float> MapStringFloat;

void mapPrint(const MapStringFloat& m){

for(MapStringFloat::const_iterator pos = m.begin(); pos != m.end(); ++pos){

cout << pos->first << " : " << pos->second << "\n";

}}

Limitations:

- you can’t do that without a process to debug (investigating core files)

- optimization of unused functions. Solution: ‘volatile’

4. Pretty-printing of STL containers in future versions of GDB

5

Item #2: Extending GDB – User-defined commands

• (gdb) show user commandname

• Example:

(gdb)define adder
print $arg0 + $arg1 + $arg2

end
(gdb) adder 1 2 3 (gdb) adder 1 2 3

6

Item #3: Automating repetitive tasks

• What GDB Does During Startup
1. Executes all commands from system init file

2. Executes all the commands from ~/.gdbinit

3. Process command line options and operands

4. Executes all the commands from ./.gdbinit4. Executes all the commands from ./.gdbinit

5. reads command files specified by the `-x' option

6. …

7

Automating tasks - history, recording

• continue What GDB Does During Startup

… 6. Reads the command history recorded in the history file.

• (gdb) set history filename fname

(gdb) set history save on/off

• (gdb) show history• (gdb) show history

• (gdb) show commands

8

Item #4: Signals

• ‘i handle’ or ‘i signals’

Print a table of all the signals and how gdb has been told to handle each

one.

• handle signal [keywords...]
keywords: nostop|stop, print|noprint and pass|nopass

Ex: handle SIG35 nostop print pass

handle SIG36 stop (implies the ‘print’ as well)handle SIG36 stop (implies the ‘print’ as well)

handle SIG37 nostop print nopass

handle SIG38 nostop noprint nopass

9

Item #5: Multi-threads

• Use case: debugging specific thread, while controlling

behavior of others.

• facilities for debugging multi-thread programs:

• automatic notification of new threads

• ‘thread threadno’, to switch among threads

• ‘info threads’, to inquire about existing threads

• thread-specific breakpoints• thread-specific breakpoints

• set mode for locking scheduler during execution
(gdb) set scheduler-locking step/on/off

others: Interrupted System Calls

• Example:

(gdb) i threads

(gbd) b foo.cpp:13 thread 28 if x > lim

10

Item #5: Remote debugging

• Use case:
- GDB runs on one machine (host) and the program being
debugged (exe.verXYZ.stripped) runs on another (target).
- GDB communicates via Serial or TCP/IP.
- Host and target: exactly match between the
executables and libraries, with one exception: stripped on the
target.
- Complication: compiling on one machine (CC view), keeping - Complication: compiling on one machine (CC view), keeping
code in different place (ex. /your/path/verXYZ)

• Solution:
- Connect gdb to source in the given place:
(gdb) set substitute-path /usr/src /mnt/cross

(gdb) dir /your/path/verXYZ

11

Remote debugging - example

• Using gdbserver through TCP connection:
remote (10.10.0.225)> gdbserver :9999 program_stripped
or remote> ./gdbserver :9999 –attach <pid>

• host> gdb program
host>(gdb) handle SIGTRAP nostop noprint pass

to avoid pausing when launching the threads

host> (gdb) target remote 10.10.0.225:9999host> (gdb) target remote 10.10.0.225:9999

12

Item #6: Back to the past

• Convenience variables are used to store values that you
may want to refer later. Any string preceded by $ is regarded
as a convenience variable.

Ex.: set $table = *table_ptr

(gdb) show conv

• Checkpoint - a snapshot of a program’s state

(gdb) checkpoint(gdb) checkpoint

(gdb) i checkpoint

(gdb) restart checkpoint-id

• Value history- values printed by the print command.

13

Small Items: #7, #8

#7. How to see macros?

$ g++ -gdwarf-2 -g3 a.cpp -o prog

#8. 64 bit .vs. 32bit

• -m32 flag

• On 64-bit machine, install another 32-bit version of GDB• On 64-bit machine, install another 32-bit version of GDB

$ ls -l `which gdb32`

/usr/bin/gdb32 -> ‘/your/install/path’

14

Lightweight how-to's

1. How to remove a symbol table from a file?

A: strip

2. How to supply arguments to your program in GDB?

A1: With --args option

#sudo gdb -silent --args /bin/ping google.com

A2: As arguments to run: (gdb) run arg1 arg2

run without arguments uses the same arguments used by the previous run. run without arguments uses the same arguments used by the previous run.

A3: With set args command:

(gdb) set args arg1 arg2

(gdb) show args
set args without arguments – removes all arguments.

3. How to know where you are (file, next execution line)?

A: (gdb) f

15

Lightweight how-to's - continue

4. How to find out the crash file executable?
A1: #file core.1234
A2: #gdb core.1234
A3: use /proc/sys/kernel/core_pattern

#echo "core_%e.%p" > /proc/sys/kernel/core_pattern

if the program foo dumps its core,
the core_foo.1234 will be created.

5. How to find out why your program stopped?5. How to find out why your program stopped?
A: (gdb) i prog

6. Which command(s) can be used to exit from loops?
A: (gdb)until lineNo

7. ‘print’, ‘info’, ‘show’- what is a difference?
‘print’ – print value of expression
‘info’ – showing things about the program being debugged
‘show’ – showing things about the debugger

16

Problem Determination Tools for Linux

• -Wall ☺

• Code review

• Program’s traces, syslog, profilers

• Static Source Code Analysis:

– scan.coverity.com – free for FOSS

– Flexelint

• Dynamic analysis: Valgrind,

• strace, /proc filesystem, lsof, ldd, nm, objdump,
wireshark

17

Summary
1. Start from thinking of Use Case, then look in the manual,

use ‘apropos’ and ‘help’

2. Productivity:
Stepping through a program is less productive than thinking
harder and adding output statements and self-checking code
at critical places.

3. When to use GDB?
- core file, - core file,
- when a problem can be reproduced, repeating errors
- self-educating

4. When not?
Other tools, traces

5. Questions?

18

