Advanced Debugging with gdb

David Khosid

Sept 21, 2009
david.kh@gmail.com

Agenda

Techniques for debugging big, modern software:

— STL containers and algorithms, Boost
Ex: how to see containers

— Signals
— Multi-threaded (ex.: how to follow a thread?)

— Repetitive tasks on the almost unchanging code base

Examples

Sources of information

GDB was first written by Richard Stallman iee sorrwase 1s Freepom
in 1986 as part of his GNU system
e Richard Stallman, “Debugging with gdb”

www.gnu.org/software/gdb/documentation
* Help: Sgdb —h
(gdb) h
(gdb) apropos

Command names may be truncated if the
abbreviation is unambiguous. TAB completion.

e Command Cheat Sheet Richard Stallman
www.yolinux.com/TUTORIALS/GDB-Commands.html

e Last GDB version is 6.8, new 7.0 soon: 2009-09-23 3

ltem #1: C++ and STL - Containers

How to see container’s content?

1. Commands file, ex. .gdbinit
http://www.yolinux.com/TUTORIALS/src/dbinit stl views-1.03.txt

Limitations: a little

2. libstdc++ compiled in debug mode
Limitations:
- different product , not for QA, not for client, not in
performance tuning stage
- performance

ltem #1: C++ and STL - Containers

How to see container’s content?

3. Auxiliary functions

typedef map<string, float> MapStringFloat;
void mapPrint(const MapStringFloat& m){
for(MapStringFloat::const _iterator pos = m.begin(); pos != m.end(); ++pos){
cout << pos->first << " : " << pos->second << "\n";

}
Limitations:

- you can’t do that without a process to debug (investigating core files)
- optimization of unused functions. Solution: ‘volatile’

4. Pretty-printing of STL containers in future versions of GDB

Iltem #2: Extending GDB - User-defined commands

e (gdb) show user commandnane

e Example:
(gdb)define adder
print Sarg0 + Sarg1 + Sarg?2
end
(gdb) adder 1 2 3

Iltem #3: Automating repetitive tasks

e What GDB Does During Startup

1. Executes all commands from system init file
2. Executes all the commands from ~/.gdbinit
3. Process command line options and operands
4. Executes all the commands from ./.gdbinit

5. reads command files specified by the "-x' option

6. ...

Automating tasks - history, recording

continue What GDB Does During Startup
... 6. Reads the command history recorded in the history file.

(gdb) set history filename f nane
(gdb) set history save on/off

(gdb) show history
(gdb) show commands

Iltem #4: Signals

* ‘i handle’ or ‘i signals’

Print a table of all the signals and how gdb has been told to handle each
one.

* handle signal [keywords...]
keywords: nostop |stop, print|noprint and pass|nopass

Ex: handle SIG35 nostop print pass
handle SIG36 stop (implies the ‘print” as well)
handle SIG37 nostop print nopass
handle SIG38 nostop noprint nopass

ltem #5: Multi-threads

Use case: debugging specific thread, while controlling
behavior of others.

* facilities for debugging multi-thread programs:

e automatic notification of new threads

e ‘thread threadno’, to switch among threads

e ‘info threads’, to inquire about existing threads
e thread-specific breakpoints

e set mode for locking scheduler during execution
(gdb) set scheduler-locking step/on/off
others: Interrupted System Calls

Example:

(gdb) i threads
(gbd) b foo.cpp:13 thread 28 if x > lim

10

Iltem #5: Remote debugging

Use case:

- GDB runs on one machine (host) and the program being
debugged (exe.verXYZ.stripped) runs on another (target).

- GDB communicates via Serial or TCP/IP.

- Host and target: exactly match between the
executables and libraries, with one exception: stripped on the
target.

- Complication: compiling on one machine (CC view), keeping
code in different place (ex. /your/path/verXYZ)

Solution:

- Connect gdb to source in the given place:
(gdb) set substitute-path /usr/src /mnt/cross
(gdb) dir /your/path/verXYZ

11

Remote debugging - example

Using gdbserver through TCP connection:
remote (10.10.0.225)> gdbserver :9999 pr ogr am st ri pped
or remote> ./gdbserver :9999 —attach <pid>

host> gdb pr ogr am
host>(gdb) handle SIGTRAP nostop noprint pass
to avoid pausing when launching the threads

host> (gdb) target remote 10.10.0.225:9999

12

Iltem #6: Back to the past

 Convenience variables are used to store values that you
may want to refer later. Any string preceded by $ is regarded
as a convenience variable.

Ex.: set$table = *table ptr
(gdb) show conv

e Checkpoint - a snapshot of a program’s state
(gdb) checkpoint

(gdb) i checkpoint
(gdb) restart checkpoi nt -1 d

e Value history- values printed by the pri nt command.

13

Small Items: #7, #8

#7. How to see macros?
S g++ -gdwarf-2 -g3 a.cpp -0 prog

#8. 64 bit .vs. 32bit

e -m32flag

* On 64-bit machine, install another 32-bit version of GDB
S Is -1 “"which gdb32"
/usr/bin/gdb32 -> ‘/your/install/path’

14

Lightweight how-to's

How to remove a symbol table from a file?

A: strip

How to supply arguments to your program in GDB?

Al: With --args option
#sudo gdb -silent --args /bin/ping google.com

A2: As arguments torun: (gdb) runarglarg2

I un without arguments uses the same arguments used by the previous r un.

A3: With set args command:
(gdb) set args arg1 arg2
(gdb) show args

set args without arguments —removes all arguments.

How to know where you are (file, next execution line)?
A: (gdb) f

Lightweight how-to's - continue

. How to find out the crash file executable?
Al: #file core.1234
A2: #gdb core.1234
A3: use /proc/sys/kernel/core_pattern
#techo "core_%e.%p" > /proc/sys/kernel/core_pattern
if the program foo dumps its core,
the core_foo.1234 will be created.

. How to find out why your program stopped?
A: (gdb) i prog

. Which command(s) can be used to exit from loops?

A: (gdb)until lineNo

‘print’, ‘info’, ‘show’- what is a difference?

‘print” — print value of expression

‘info’ — showing things about the program being debugged
‘show’ —showing things about the debugger

Problem Determination Tools for Linux

e -Wall©
e Code review
* Program’s traces, syslog, profilers

e Static Source Code Analysis:
— scan.coverity.com — free for FOSS
— Flexelint

e Dynamic analysis: Valgrind,

e strace, /proc filesystem, Isof, Idd, nm, objdump,
wireshark

17

Summary

Start from thinking of Use Case, then look in the manual,

use ‘apropos’ and ‘help’

Productivity:

Stepping through a program is less productive than thinking
harder and adding output statements and self-checking code
at critical places.

. When to use GDB?

- core file,
- when a problem can be reproduced, repeating errors
- self-educating

. When not?

Other tools, traces

Questions?

