Valgrind

From Magic to Science

Shachar Raindel

The Technion

Haifux, 2010

Shachar Raindel Valgrind

QOutline

@ Magic - Valgrind at Work
@ Background
@ Live Demo
o Potential Pitfalls

Shachar Raindel Valgrind

QOutline

@ Magic - Valgrind at Work
@ Background
@ Live Demo
o Potential Pitfalls

© More Magic - Advanced Valgrind Usage
@ Other Tools in Valgrind
@ Fine Tuning and Client Requests

Shachar Raindel Valgrind

QOutline

@ Magic - Valgrind at Work
@ Background
@ Live Demo
o Potential Pitfalls

© More Magic - Advanced Valgrind Usage
@ Other Tools in Valgrind
@ Fine Tuning and Client Requests

© Science - How does Valgrind do that?
@ The Core - Stuff all Valgrind Tools Share
@ Memcheck - Behind the Scenes
@ Stuff | use Valgrind for

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Valgrind

“Valgrind is an award-winning instrumentation framework
for building dynamic analysis tools” - Valgrind's front page

@ Mostly known for Memcheck, which pinpoint many common
problems in C/C++ code

Extremely useful tool for the novice C/C++ programmer
Also useful for experienced ones

Similar to Purify, Bounds-Checker, CodeGuard and Insure++
Supports X86/Linux, AMD64/Linux, PPC32/Linux,
PPC64/Linux and X86/Darwin (Mac OS X)

e ARM/Linux and MIPS/Linux ports are in progress, some
versions for *BSD

@ Supports wine - test your windows code with Valgrind!
o Available for X86/Linux since ~2003, actively developed

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Sample (Bad) Code

@ We will use the following code for demonstration purposes:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #define SIZE 100

4 int main() {

5 int i, sum = 0;

6 int xa = malloc(SIZE);

7 for(i=0; i < SIZE; ++i) sum += a[i];
8 a[26] = 1;

9 a = NULL;

10 if (sum > 0) printf("Hil\n");

11 return 0;

12 }

o Contains many bugs. Compiles without warnings or errors.

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Live Demo

o We are going to:

e compile the code

gcc -Wall -ansi -pedantic -g -o sample sample.c

e run the bare code
./sample

e run the program with valgrind

valgrind ——leak-check=full ./sample

@ Results analysis will follow shortly after

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Invalid Reads

Example

==8990== Invalid read of size 4

==8990== at 0x804844A: main (sample.c:7)

==8990== Address 0x417e08c is 0 bytes after a block of size 100
alloc’d

==8990== at 0x4024C1C: malloc (vg_ replace malloc.c:195)
==8990== by 0x8048430: main (sample.c:6)

@ We read past the end of the allocated array
@ Trying to read from area which we are not allowed to access

@ Could result in a SEGFAULT and surely doesn’t do what we
want

@ Valgrind provides enough details to find the problem.

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Invalid Writes

Example

==8990== Invalid write of size 4

==8990== at 0x8048463: main (sample.c:8)

==8990== Address 0x417e090 is 4 bytes after a block of size 100
alloc'd

==8990== at 0x4024C1C: malloc (vg replace malloc.c:195)
==8990== by 0x8048430: main (sample.c:6)

@ Similar to invalid read
@ Details provided by valgrind:
o Location of fault (addresses, line number if debug-information
present)
o Stack-trace to fault (you can get more using
——num-—callers=30)
o Relevant blocks details and allocation/de-allocation stack-trace

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Memory Leaks

@ At the end of the run, Valgrind does “Garbage Collection”
e Unreferenced memory in C/C++ = memory leak

==8990== 100 bytes in 1 blocks are definitely lost in loss record 1
of 1

==8990== at 0x4024C1C: malloc (vg replace malloc.c:195)
==8990== by 0x8048430: main (sample.c:6)

@ Valgrind provides stack-trace for the allocation point
@ 3 kinds:
o Definitely lost (no pointers to allocation)
o Probably lost (pointers only to the middle of the allocation)
o Still reachable (block hasn’t been free'd before exit, but
pointers to it still exists)

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Use of Uninitialized Value

SEPE
==8990== Conditional jump or move depends on uninitialised

value(s)
==8990== at 0x8048476: main (sample.c:10)

@ Valgrind checks and make sure the program flow is
deterministic

@ Usage of values which haven't been initialized in conditions is
reported

@ Also if they are passed as parameters for syscalls

e Valgrind will detail location in which the uninitialized data was
used

o To get trace to the source of it, add “——track—origins=yes’
to the command-line

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

QOutline

@ Magic - Valgrind at Work

@ Potential Pitfalls

Shachar Raindel Valgrind

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Danger, Will Robinson

@ http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2008-0166

@ Most of the time Valgrind's errors describe latent flaws in the
program

@ However, sometimes Valgrind is wrong

o Cryptography related code requires special attention

A debian developer commented out code that valgrind didn't
like

Resulting in a latent bug

With massive security implications

All because valgrind claimed a value is used uninitialized

Was intentionally used so, to collect more entropy

Shachar Raindel Valgrind

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-0166

Magic - Valgrind at Work Background
Live Demo
Potential Pitfalls

Problems that Valgrind doesn’t Detect

o Buffer overflows which ends up accessing valid memory:

Example

char *p = malloc(1024); /% block 1 %/
char xq = malloc(1024); /x block 2 x/
p += 1200; /x "p" now points into block 2 x/

xp = 'a’; [+ invalid write — undetected x/

@ Accesses to stack variables and global variables are not checked
@ Business logic/algorithmic problems are not detected
@ Checks only code that was executed

@ Doesn't work well with statically-linked code

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

QOutline

© More Magic - Advanced Valgrind Usage
@ Other Tools in Valgrind

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

Other Tools in Valgrind

e We talked about Memcheck — the default tool in Valgrind
@ But Valgrind can do much more than that
@ Contains many tools, some stable, some experimental
@ You can even write your own tools in few days of work
e Valgrind ships with the following tools:
— Ptrcheck — Memcheck — Helgrind — DRD
— Cachegrind - Callgrind — Lackey — None
- Massif - BBV

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

Ptrcheck

Activate by adding ——tool=exp-ptrcheck
Similar in goals to Memcheck

Still experimental

Uses very different approach than Memcheck

Can detect failures Memcheck doesn’t detect (like the code we

)

@ Has got false positives (different than the ones Memcheck
gets)
@ Slower than Memcheck

@ Doesn't check for memory leakage and validity of accesses

@ Use alongside Memcheck for better coverage

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuni nd Client Requests

Profiling Tools

e Cachegrind

Traces the code memory accesses and jump patterns
Simulates a 2-level cache and branch predictor
Provide details about cache misses and their source
Can help optimizing performance critical code

e Callgrind

e Extends Cachegrind
o Propagates the costs along the call-tree
e Has a KDE front-end — KCacheGrind

o Massif

e Memory allocations profiler

o Keeps stack-trace of every memory allocation/deallocation

e Print memory usage status in peak times and upon specific
intervals

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

Thread Error Detectors

@ Functionality similar to Intel’s ThreadChecker
@ Detects a variety of threading related problems:

o Threading API misuse
o Lock order problems (potential dead-locks)
e Data-Races

@ Two similar implementations in Valgrind
e Helgrind

@ The Internet claims it produces many false positives
@ Supposedly catches more errors too

e DRD

Shachar Raindel Valgrind

Other Tools in V:

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

QOutline

© More Magic - Advanced Valgrind Usage

@ Fine Tuning and Client Requests

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

Client Requests

e Valgrind provides communication channel for tested programs
@ Good for unit-test harnesses
@ Also good if you are doing weird stuff in your code
e A special memory allocator, such as object-pool
e Use VALGRIND _CREATE_MEMPOOL to mark a memory
area as an object-pool
o Use VALGRIND _MEMPOOL_ALLOC to mark an object as
allocated
o Use VALGRIND _MEMPOOL_FREE to mark an object as
free
o Self-Modifying code, i.e. JIT compiler
o Use VALGRIND DISCARD_TRANSLATIONS to report
about areas in which code has been changed
@ Useful also for hunting bugs

o For example, check for memory leaks, using
VALGRIND DO LEAK CHECK

Shachar Raindel Valgrind

Other Tools in Valgrind

More Magic - Advanced Valgrind Usage Fine Tuning and Client Requests

Suppression Files

@ Valgrind tends to be very noisy
@ Most of the times it is indicating bugs that should be fixed

e But not always the one we want to fix right now

@ Sometimes it is correct code, which Valgrind failed to
understand

o Mostly in sophisticated/extremely optimized library code
e Also possible when having unusual interactions with the kernel

@ Valgrind includes a mechanism to silent a specific error

o Works with all tools that report errors
o Simple file format, see documentation for details
e Valgrind includes suppression for many common libs

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

QOutline

© Science - How does Valgrind do that?
@ The Core - Stuff all Valgrind Tools Share

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

VEX - Binary Translation

We want to inspect all memory accesses in the code
Straight forward solution - CPU emulation

But this is really slow

Treat the program binary as “source-code”

Allow the tools to modify the code being compiled

VEX's front-end translates X86 opcodes into Intermediate
Representation code

VEX's back-end translates IR code back to X86 code

@ Tools can manipulate the IR code in the middle

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

IR code

@ VEX translates each guest opcode into a block of IR code
@ IR code is similar to assembly for a RISC-style machine
@ IR code assumes machine with infinite number of variables

@ The “guest state” is stored in a special memory area

IR translation of “add| %eax, %ebx”

—— IMark(0x24F275, 7) —

t3 = GET:I132(0) # get %eax, a 32-bit integer
t2 = GET:I132(12) # get %ebx, a 32-bit integer
tl = Add32(t3,t2) # addl

PUT(0) = t1 # put %eax

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

IR code - Properties

o IR code is fully typed:

o All variables and results of calculations have type
e No implicit type conversion
e VEX performs sanity checks on these types all of the time

@ IR code is in a Single Static Assignment form

e Each variable is assigned only once
o Simplifies the instrumentation of the code
o Also simplifies the optimization of the code when running it

@ IR code is presented to the tools in semi-parsed form

o Easy to manipulate lists of instructions

e Instructions are presented in a convinient data-structure

o Useful functions for manipulating IR code (add/remove
instructions, etc.)

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

JIT, VEX and IR

@ The X86 — IR — X86 translation is done in a Just In Time
manner

@ Every basic-block is translated upon its first execution
Basic-Block - a linear sequence of code, with one entry point, one
exit point and no jump instructions contained within it.

@ The translation is done so that Valgrind's dispatcher regains

control after each basic-block

@ Caching of translated code blocks improves execution speed

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Bootstrap Code

@ Small, shared launcher - launches the relevant tool
@ Each tool's binary contains a complete copy of the core code
@ The interesting stuff in bootstrap:

Reading the debug information for the target program
Initialize VEX - Valgrind's binary-translation mechanism
Call tool-specific init code

Load the target program

Setup the environment for the target program run
Initialize Valgrind’s thread-scheduler

o The scheduler makes sure that only one thread runs at a time
o Still replicates the entire thread structure to the OS
o Also handles signals

o Kick-start the “guest” application main thread, using VEX and
Valgrind's dispatcher

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Function Call Redirection

Valgrind implements a redirection mechanism
This mechanism can “hijack” various function calls
Done in the binary translation level

Some examples where this ability is useful:

Memory allocation functions

Various sys-calls (write/read files, etc.)

Loading dynamic-link library

Replace some optimized functions with debug versions

The guest code can request that as well

e Redirect requests are indicated by a specially mangled function
name

e Special "magic-sequance” to call the original function
o Nice C macros make it developer friendly
e See documentation for details

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Client Requests - Behind the Scenes

@ The VEX compiler recognizes few magic-sequances
@ The magic-sequances are a no-op when run on normal CPU

@ In X86, the magic-sequance is “roll 3, %edi ; roll 13, %edi; roll
29, %edi ; roll 19, %edi;”

o Followed by “xchgl %reg, %reg”, where reg indicates the kind
of the magic-sequance

@ Similar style request for the other platforms
@ Used to trigger Valgrind’'s Client Request mechanism

@ On X86, client request param is passed on EAX, result is
returned on EDX

@ Also used for calling functions without the redirects

@ And for getting the original address of a redirected call

Shachar Raindel Valgrind

The Core ff all Valgrind To
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

QOutline

© Science - How does Valgrind do that?

@ Memcheck - Behind the Scenes

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Memcheck Basics, A-bits

@ Memcheck tracks what memory the guest application may
access

@ Two levels of allowed access:

o Write to / read from the memory
o Use the value in memory for anything serious

@ The first one is tracked with “A” bits (Access)

One bit per byte of memory

Set to 0 if guest is not allowed to access (i.e. free'd block)
Set to 1 upon memory allocation

Report an error if guest code touched memory with A ==

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools S
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

@ The second access level is tracked with “V" bits (Valid)

e One bit per bit of memory

e Set to 1 if the original memory bit haven't been defined yet
e Set to zero once the memory bit is set

o State is transitive

If ¢ is not defined, evaluating a = b + ¢ will get a to be undefined too

e Reports an error when conditional jumps and syscalls are given
undefined values

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Leak Check

Memcheck does leak check in the end of a run of a program
It is possible to trigger it through a client request as well
Very similar in concept to garbage—collection

Chases pointers from globals and stack variables

Only considers pointers which are defined (V-bit = 0)

If there are no pointers to a block, it is “definitely lost”

If there are still valid pointers to a block, it is “still reachable”

If there is a pointer to somewhere in the middle of a block, it
is “possibly lost”

o If the only pointers to a block are from definitely lost blocks, it
is “indirectly lost”

@ Valgrind keeps the stack-trace of the allocation point for each
block

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

QOutline

© Science - How does Valgrind do that?

@ Stuff | use Valgrind for

Shachar Raindel Valgrind

The Core - Stuff all Valgrind Tools Share
Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

My Research (So Far)

@ In my research, I'm looking into memory allocation schemes

My claim is that with proper hinting from the application these
can be improved significantly

| use valgrind to measure the current situation
Attempting to quantify possible improvement

A new tool, which | call mtrace

Practically merges parts of lackey and of massif
Traces all allocations and memory accesses

Post-processing scripts for gathering statistics and data

Nice plots of memory access patterns in Matlab (next slides)

Shachar Raindel Valgrind

The Core - ff ind Tools Share
Memcheck - Behind the
Science - How does Valgrind do that? Stuff | use Valgrind for

Memory Access Patern of Xvnc

6000
5000 g : =
*
*
%
4000 - =
] L
*
*
3000 —
*
il
**
2000 %"
*
=1 |
0 0.5 1 15 2 25 3 35 4 4.5

Shachar Raindel Valgrind

Memcheck - Behind the Scenes
Science - How does Valgrind do that? Stuff | use Valgrind for

Memory Access Patern of Xvnc (Detail)

4500 -

4480

4460

4440

44201

4400

4380

4.95 5 5.05 5.1 5.15 5.2 5.25 53 5.35 5.4

Shachar Raindel Valgrind

The Core - Stuff all Valgrind To
Memcheck - Behind the
Science - How does Valgrind do that? Stuff | use Valgrind for

Questions?

Shachar Raindel Valgrind

	Magic - Valgrind at Work
	Background
	Live Demo
	Potential Pitfalls

	More Magic - Advanced Valgrind Usage
	Other Tools in Valgrind
	Fine Tuning and Client Requests

	Science - How does Valgrind do that?
	The Core - Stuff all Valgrind Tools Share
	Memcheck - Behind the Scenes
	Stuff I use Valgrind for

