
Introduction How SHA-3

The Hitchhiker’s Guide

to the SHA-3 Competition

Orr Dunkelman

Faculty of Mathematics and Computer Science
Weizmann Institute of Science

October 4th 2010

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 1/ 58



Introduction How SHA-3

Outline

1 Introducing Cryptographic Hash Functions
What is a Cryptographic Hash Function
Security
Collision Resistance
History of Hash Functions

2 How to Build a Hash Function
The Hash Function Cookbook
The Merkle-Damg̊ard Construction
The Sad News about Merkle-Damg̊ard
The MD/SHA Family
The SHA-1 Hash Function
The Sad News about the MD/SHA Family

3 The SHA-3 Competition
The First Phase
The Second Round Candidates
The Third Round
The Outcome of SHA-3

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 2/ 58



Introduction How SHA-3 HF Security CR History

Outline

1 Introducing Cryptographic Hash Functions
What is a Cryptographic Hash Function
Security
Collision Resistance
History of Hash Functions

2 How to Build a Hash Function
The Hash Function Cookbook
The Merkle-Damg̊ard Construction
The Sad News about Merkle-Damg̊ard
The MD/SHA Family
The SHA-1 Hash Function
The Sad News about the MD/SHA Family

3 The SHA-3 Competition
The First Phase
The Second Round Candidates
The Third Round
The Outcome of SHA-3

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 3/ 58



Introduction How SHA-3 HF Security CR History

What is a Cryptographic Hash Function?

A hash function is a function that accepts an input of
indefinite length, and outputs a digest of fixed length.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 4/ 58



Introduction How SHA-3 HF Security CR History

What is a Cryptographic Hash Function?

A cryptographic hash function is a function that accepts an
input of indefinite length, and outputs a digest of fixed length
securely.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 4/ 58



Introduction How SHA-3 HF Security CR History

First Introduction to Cryptography

[DH76] There is, however, a modification which
eliminates the expansion problem when N is roughly
a megabit or more. Let g be a one-way mapping
from binary N-space to binary n-space where n is
approximately 50. Take the N bit message m and
operate on it with g to obtain the n bit vector m′.
Then use the previous scheme to send m′. . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 5/ 58



Introduction How SHA-3 HF Security CR History

What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 6/ 58



Introduction How SHA-3 HF Security CR History

What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.

◮ The main problem is the definition of securely.

◮ For signature schemes, two basic requirements exist:

1 Second preimage resistance: given x , it is hard to find x ′

s.t. h(x) = h(x ′).
2 Collision resistance: it is hard to find x1, x2 s.t.

h(x1) = h(x2).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 6/ 58



Introduction How SHA-3 HF Security CR History

What is a Hash Function? (cont.)

◮ (Cryptographic) Hash Functions are means to securely

reduce a string m of arbitrarily length into a fixed-length
digest.

◮ The main problem is the definition of securely.

◮ For signature schemes, three basic requirements exist:

1 Preimage resistance: given y = h(x), it is hard to find x

(or x ′, s.t., h(x ′) = y).
2 Second preimage resistance: given x , it is hard to find x ′

s.t. h(x) = h(x ′).
3 Collision resistance: it is hard to find x1, x2 s.t.

h(x1) = h(x2).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 6/ 58



Introduction How SHA-3 HF Security CR History

What is a Hash Function? (cont.)

The Hitch Hiker’s Guide to the Galaxy has a few things to say on the
subject of hash functions.
A hash function, it says, is about the most massively useful thing a
cryptographer can have. Partly it has great practical value — you can
use it to replace random oracles in real protocols when you need them;
you can use them to make signatures faster; you can use it along with
salts to have better password files; you can commit to bits using it; you
can derive keys using it; produce pseudo random numbers using it;
authenticate data with it, and of course, just hash the data when you
need a digest.
More importantly, a hash function has immense psychological value. For
some reason, if a strag (strag: non-cryptographer) discovers that a
cryptographer has his hash function with him, he will automatically
assume that he is also in possession of a symmetric-key encryption, a
public-key encryption, a voting protocol, a zero-knowledge protocol, etc.
etc. Furthermore, the strag will then happily implement for the
cryptographer any of these or a dozen other protocols that the
cryptographer is too “busy” do himself. What the strag will think is that
any cryptographer who can design protocols, follow bits, avoid
differentials, and SAT solvers, and still knows where his hash function is
is clearly a man to be reckoned with.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 7/ 58



Introduction How SHA-3 HF Security CR History

What is a Hash Function? (cont.)

◮ Hash functions were quickly adopted in other places:
◮ Password files (storing h(pwd , salt) instead of pwd).
◮ Bit commitments schemes (commit — h(b, r), reveal —

b, r).
◮ Key derivation functions (take k = h(gxy mod p)).
◮ MACs (long story).
◮ Tags of files (to detect changes).
◮ Inside PRNGs.
◮ In certificates (in the signatures).
◮ Inside protocols (used in many “imaginative” ways).
◮ . . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 8/ 58



Introduction How SHA-3 HF Security CR History

What do we Want out of Our Hash Functions?

As hash functions are widely used, various requirements are
needed to ensure the security of construction based on hash
functions:

◮ Collision resistance — signatures, bit commitment (for
binding), MACs.

◮ Second preimage resistance — signatures.

◮ Preimage resistance — signatures (RSA, or other
TD-OWP), password files, bit commitment (for hiding).

◮ Pseudo Random Functions — key derivation, MACs.

◮ Pseudo Random Oracle — protocols, PRNGs.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 9/ 58



Introduction How SHA-3 HF Security CR History

What do we Really Want out of Hash Functions?

We want the hash function to behave in a manner which
would prevent any adversary from doing anything malicious to
the hash function:

◮ One-wayness (no inversion).

◮ No collisions (up to the birthday bound).

◮ No second preimages.

◮ Outputs which are nicely distributed.

◮ . . .

Therefore, the ideal hash function attaches for each possible
message M a random value as h(M). And voilá — a random
oracle.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 10/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages. Also preimages.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages. Also preimages.

◮ Finding them is possible.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages. Also preimages.

◮ Finding them is possible.

◮ But should be hard.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages. Also preimages.

◮ Finding them is possible.

◮ But should be hard.

which raises the question:

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

What about Security?

◮ Collisions exist. Also second preimages. Also preimages.

◮ Finding them is possible.

◮ But should be hard.

which raises the question:

How hard?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 11/ 58



Introduction How SHA-3 HF Security CR History

Optimal Security of a Hash Function

If h(·) is the ideal hash function (a random oracle):

◮ Finding a preimage — O(2n) work (exhaustive search).

◮ Finding a second preimage — O(2n) work (exhaustive
search).

◮ Finding a collision — O(2n/2) work (birthday attack) [can
be done with small memory overhead (Floyd or Nivasch)].

for an n-bit digest size.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 12/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions

Let us try to define the meaning of h(·) being collision
resistant.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 13/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions

Let us try to define the meaning of h(·) being collision
resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 13/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions

Let us try to define the meaning of h(·) being collision
resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.

◮ h(·) is a hash function. Therefore, necessarily there exist
a, b such that h(a) = h(b). Consider the algorithm:

print a, b.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 13/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions

Let us try to define the meaning of h(·) being collision
resistant.

◮ It is computationally infeasible to find a collision.
Formally: There is no efficient algorithm which given h
finds collisions.

◮ h(·) is a hash function. Therefore, necessarily there exist
a, b such that h(a) = h(b). Consider the algorithm:

print a, b.

What Should We Do?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 13/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions (cont.)

◮ Practical solution — a and b are unknown. For any
specific function finding them takes O(1) anyway. So who
cares?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 14/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions (cont.)

◮ Practical solution — a and b are unknown. For any
specific function finding them takes O(1) anyway. So who
cares?

◮ Theoretical solution (I) — let us define a family of hash
functions, and bundle the collision resistance of one of
them to the collision resistance of the family.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 14/ 58



Introduction How SHA-3 HF Security CR History

Collision Resistance of Hash Functions (cont.)

◮ Practical solution — a and b are unknown. For any
specific function finding them takes O(1) anyway. So who
cares?

◮ Theoretical solution (I) — let us define a family of hash
functions, and bundle the collision resistance of one of
them to the collision resistance of the family.

◮ Theoretical solution (II) — we do not know the value of
a, b for a specific hash function. Thus, let us define a
protocol Π, which uses a hash function h(·), such that we
can show that every adversary A against Π yields an
attack on h(·) [R05].

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 14/ 58



Introduction How SHA-3 HF Security CR History

A(n Extremely) Short History of Hash Functions

1976 Diffie and Hellman suggest to use hash functions to make
digital signatures shorter.

1977/8 Rabin’s hash function based on DES as a compression
function.

1978 Yuval’s attack on Rabin’s hash (invertible compression
functions are not a good idea).

1979 Salted passwords for UNIX (Morris and Thompson).

1983/4 Davies/Meyer introduce Davies-Meyer.

1986 Fiat and Shamir use random oracles.

1989 Merkle and Damg̊ard present the Merkle-Damg̊ard hash
function.

1990 MD4 is introduced by Rivest.

1990 Snefru is almost broken by differential cryptanalysis.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 15/ 58



Introduction How SHA-3 HF Security CR History

A(n Extremely) Short History of Hash Functions

1992 MD5 is introduced by Rivest.

1993 Preneel, Govaerts, Vandewalle study block-cipher based
hashing.

1993 den Boer & Bosselaers find collisions in MD5’s
compression function.

1993 Bellare & Rogaway formally introduce random oracles.

1993 SHA-0 is introduced.

1995 SHA-1 is introduced.

1995 Collisions for MD4 are published.

1997 SHA-0 is broken by Chabaud and Joux.

1999 Dean’s long second preimage attack on Merkle-Damg̊ard.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 16/ 58



Introduction How SHA-3 HF Security CR History

A(n Extremely) Short History of Hash Functions

2001 SHA-2 is introduced.

2004 Joux’s multicollision attack.

2004 Wang introduces attacks on MD4, MD5.

2005 Collision attacks on SHA-0 and SHA-1.

2005 Kelsey & Scheneier’s long second preimage attack on
Merkle-Damg̊ard.

2006 Kelsey & Kohno’s herding attack.

2006 Better collision attacks on SHA-1.

2007 Preimage attacks on reduced-round SHA-1.

2007 SHA-1 Collision BOINC project starts.

2008 The SHA-3 competition starts . . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 17/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Outline

1 Introducing Cryptographic Hash Functions
What is a Cryptographic Hash Function
Security
Collision Resistance
History of Hash Functions

2 How to Build a Hash Function
The Hash Function Cookbook
The Merkle-Damg̊ard Construction
The Sad News about Merkle-Damg̊ard
The MD/SHA Family
The SHA-1 Hash Function
The Sad News about the MD/SHA Family

3 The SHA-3 Competition
The First Phase
The Second Round Candidates
The Third Round
The Outcome of SHA-3

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 18/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Hash Function

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 19/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Hash Function

?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 19/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Symmetric-Key Block

Cipher-Based Encryption Scheme

1 Design a block cipher.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 20/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Symmetric-Key Block

Cipher-Based Encryption Scheme

1 Design a block cipher (a primitive that accepts a key of
fixed length, and encrypts plaintexts of a fixed length).

2 Find a good mode of iteration.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 20/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Symmetric-Key Block

Cipher-Based Encryption Scheme

1 Design a block cipher (a primitive that accepts a key of
fixed length, and encrypts plaintexts of a fixed length).

2 Find a good mode of iteration (a method to encrypt
messages whose length is different than the block size).

3 Combine the two together.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 20/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Symmetric-Key Block

Cipher-Based Encryption Scheme

1 Design a block cipher (a primitive that accepts a key of
fixed length, and encrypts plaintexts of a fixed length).

2 Find a good mode of iteration (a method to encrypt
messages whose length is different than the block size).

3 Combine the two together.

Examples of modes of operation: ECB, CBC, CTR, . . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 20/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Build a Hash Function (part II)

◮ Design a compression function (a black box that accepts
n + b bits and produces n bits).

◮ Find a good mode of iteration (a way to handle messages
of length longer (or shorter) than n + b).

◮ Combine the two.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 21/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Merkle-Damg̊ard Construction

Given a compression function f : {0, 1}n × {0, 1}b → {0, 1}n,
the Merkle-Damg̊ard hash function Hf is defined as:

1 Pad the message M to a multiple of b (with 1, and as
many 0’s as needed and the length of the message).

2 Divide the padded message into ℓ blocks m1m2 . . .mℓ.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 22/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Merkle-Damg̊ard Construction

Given a compression function f : {0, 1}n × {0, 1}b → {0, 1}n,
the Merkle-Damg̊ard hash function Hf is defined as:

1 Pad the message M to a multiple of b (with 1, and as
many 0’s as needed and the length of the message).

2 Divide the padded message into ℓ blocks m1m2 . . .mℓ.
3 Set h0 = IV .
4 For i = 1 to ℓ, compute hi = f (hi−1, mi).
5 Output hℓ (or some function of it).

f f f f f fIV h(M)
mℓmmmm i321

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 22/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 23/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 23/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 23/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).

To conclude, if f is collision resistant (i.e., it takes O(2n/2)
invocations to find a collision), then Hf is collision resistant
and (second) preimage resistant with security level of O(2n/2).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 23/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Security of the Merkle-Damg̊ard Construction

◮ Finding a collision in Hf means finding a collision in f .

◮ Thus, if f is collision-resistant, so is Hf .

◮ Also, finding a second preimage in Hf means finding a
collision in f .

◮ The same is true for finding a preimage (because you can
use it to find a second preimage).

To conclude, if f is collision resistant (i.e., it takes O(2n/2)
invocations to find a collision), then Hf is collision resistant
and (second) preimage resistant with security level of O(2n/2).

But we want better security guarantees (of O(2n)) for
(second) preimage resistance!

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 23/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Multi-collision Attacks on Iterative Hashing

◮ Finding 2t collisions in iterative hash function with
chaining value length mc , takes O(t · 2n/2) [J04]

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 24/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Multi-collision Attacks on Iterative Hashing

◮ Finding 2t collisions in iterative hash function with
chaining value length mc , takes O(t · 2n/2) [J04]

h0 h1 h2 h3 h4

m2
1

m1
1

m2
2

m1
2

m2
3

m1
3

m2
4

m1
4

In an ideal hash function the time complexity should be

O(2
2t−1

2t
·n).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 24/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

How to Generate an Expandable Messages

◮ In [KS05] the expandable message is constructed as a
multi-collision. In the first block between a message of
one block and a message of two blocks. Then, between
one block and three blocks, one block and five, etc.

h0 h1 h2 h3 h4

m′

1||m
′

2

m1

m′

3||m
′

4||m
′

5

m2

m′

6|| . . . ||m
′

10

m3

m′

11|| . . . ||m
′

19

m4

Computational cost: O(ℓ · 2n/2 + 2ℓ) for an expandable
message of lengths between ℓ and 2ℓ + ℓ− 1.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 25/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

IV h1 h2 h3 hi hL−1 hL

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

IV h1 h2 h3 hi hL−1 hL

IV h

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

IV h1 h2 h3 hi hL−1 hL

IV h

x?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

IV h1 h2 h3 hi hL−1 hL

IV h
x
?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

IV h1 h2 h3 hi hL−1 hL

IV h

x

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.

IV h1 h2 h3 hi hL−1 hL

IV h

x

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.

IV h1 h2 h3 hi hL−1 hL

IV h

x

message of length i − 1

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Expandable Message→ a Second Preimage Attack

◮ Generate an expandable message that covers many
lengths (up to 2ℓ), whose output chaining value is h.

◮ Try to find x , such that f (h, x) = hi (one of the chaining
values computed for the original message).

◮ Once the “connection” step succeeds, fix the length using
the precomputed expandable message.

◮ Online time complexity: O(2n−ℓ).

IV h1 h2 h3 hi hL−1 hL

IV h

x

message of length i − 1

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 26/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The MD/SHA-Family

The MD/SHA family is composed of many hash functions
with similar design criteria:

◮ Davies-Meyer transformation of a block cipher into a
compression function.

◮ Merkle-Damg̊ard hash function.
◮ Simple round functions (with little nonlinearity).
◮ The nonlinearity is “introduced” bit-by-bit (AND, MAJ

operations) and using addition modulo 232.
◮ The message expansion (key schedule) is linear (either

repetition, or through an LFSR).
◮ Very software-friendly (not so bad on hardware as well).
◮ Message block: 512-bit (1024 for SHA-2); Digest size:

128-bit (MD4/5), 160-bit (SHA-0/1), 224/256/384/512
(SHA-2).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 27/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The SHA-1 Hash Function (cont.)

◮ Designed by the NSA, following the structure of MD4 and
MD5.

◮ SHA-1 is a Merkle-Damg̊ard hash function:

1 Padding: Given an m-bit message, a single bit “1” is
appended as the m + 1’th bit and then (448 − (m + 1))
mod 512 (between 0 and 511) zero bits are appended.
As a result, the message becomes 64-bit short of being a
multiple of 512 bits long.

2 Merkle-Damg̊ard Strengthening Append the length:
A 64-bit representation of the original length of m is
appended, making the result a multiple of 512 bits long.

3 Division into Blocks The result is divided into 512-bit
blocks, denoted by M1, M2, . . . , Mℓ.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 28/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The SHA-1 Hash Function (cont.)

The internal state of SHA-1 is composed of five 32-bit words
A, B , C , D and E , used to keep the 160-bit chaining value hi .

◮ Initialization: The initial value (h0) is set to

A = 67452301x ; B = EFCDAB89x ;

C = 98BADCFEx ; D = 10325476x ;

E = C3D2E1F0x .

◮ Compression: For each block, the compression function
hi = H(hi−1, Mi) is applied on the previous value of
hi−1 = (A, B , C , D, E ) and the message block.

◮ Output: The hash value is the 160-bit value
hℓ = (A, B , C , D, E ).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 29/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Compression Function H of SHA-1

1 Divide Mi into 16 32-bit words: W0, W1, W2, . . . , W15.

2 for t = 16 to 79 compute
Wt = (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ≪ 1.

3 Set (A0, B0, C0, D0, E0)← hi−1.

4 For t = 0 to 79 do

1 T = At ≪ 5 + ft(Bt ,Ct ,Dt) + Et + Wt + Kt .
2 Et+1 = Dt , Dt+1 = Ct , Ct+1 = Bt ≪ 30, Bt+1 = At ,

At+1 = T .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 30/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Compression Function H of SHA-1 (cont.)

5 Output A = A0 + A80, B = B0 + B80, C = C0 + C80,
D = D0 + D80, and E = E0 + E80 (modulo 232).

6 The function ft and the values Kt used above are:

0 ≤ t ≤ 19: ft(X , Y , Z ) = XY ∨ (¬X )Z Kt = 5A827999

20 ≤ t ≤ 39: ft(X , Y , Z ) = X ⊕ Y ⊕ Z Kt = 6ED9EBA1

40 ≤ t ≤ 59: ft(X , Y , Z ) = XY ∨ XZ ∨ YZ Kt = 8F1BBCDC

60 ≤ t ≤ 79: ft(X , Y , Z ) = X ⊕ Y ⊕ Z Kt = CA62C1D6

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 31/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Compression Function H of SHA-1 (cont.)

A0 B0

C0

D0 E0

≪ 30

≪5

⊞

K1 ⊞

W1 ⊞

f1

⊞

≪ 30

≪5

⊞

Ki ⊞

Wi ⊞

fi

⊞

Feed Forward

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 32/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Shortcomings of the MD/SHA Family

◮ Apparently, most of the nonlinearity is introduced either
in addition or locally (bitwise operations).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 33/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Shortcomings of the MD/SHA Family

◮ Apparently, most of the nonlinearity is introduced either
in addition or locally (bitwise operations).

◮ An immediate consequence — easy to approximate the
algorithm as a linear.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 33/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Shortcomings of the MD/SHA Family

◮ Apparently, most of the nonlinearity is introduced either
in addition or locally (bitwise operations).

◮ An immediate consequence — easy to approximate the
algorithm as a linear.

◮ Easy to define the conditions on when the approximation
holds.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 33/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Shortcomings of the MD/SHA Family

◮ Apparently, most of the nonlinearity is introduced either
in addition or locally (bitwise operations).

◮ An immediate consequence — easy to approximate the
algorithm as a linear.

◮ Easy to define the conditions on when the approximation
holds.

◮ Along with a simple message expansion, relatively slow
diffusion, and many cool techniques∗ one can offer
differentials with high probability that lead to collisions.

∗multi-block collision, neutral bits, message modification, advance
message modification, generalized differentials, amplified boomerang
attack.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 33/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

Ai Bi Ci Di Ei

Ki

Wi

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 0 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 0 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 0 0 0 0

0

ej

ej 0 0 0 0

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

ej 0 0 0 0

0

ej+5

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

ej 0 0 0 0

0

ej+5

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

ej 0 0 0 0

0

ej+5

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

ej 0 0 0 0

0

ej+5

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

ej 0 0 0 0

0

ej+5

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej 0 0 0

0

ej

0 ej+300 0 0

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 0 0

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 0 0

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 0 0

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 0 0

0

ej+30

0 ej+300 0 0

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 0 0

0

ej+30

0 ej+300 0 0

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 00

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 00

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 00

0

ej+30

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Example: Local Collisions of SHA-0 [CJ97]

0 ej+300 00

0

ej+30

0 0 0 0 0

fi

≪ 30

≪5

⊞

⊞

⊞

⊞

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 34/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

The Current State of Affairs

Hash Collisions Second Preimage Preimage
MD4 By hand 2102 2102

MD5 216 ≈ 2128 ≈ 2128

SHA-0 (80 rounds) 239 up to 52 rounds up to 52 rounds
SHA-1 (80 rounds) ≈ 260.3 up to 48 rounds up to 48 rounds

SHA-256 (64 rounds) up to 24 rounds up to 43 rounds up to 43 rounds
SHA-512 (80 rounds) up to 24 rounds up to 46 rounds up to 46 rounds

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 35/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Our Options

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 36/ 58



Introduction How SHA-3 Recipe MD Sad MD/SHA SHA-1 Sad II

Our Options

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 36/ 58



Introduction How SHA-3 First Second Third Outcome

Outline

1 Introducing Cryptographic Hash Functions
What is a Cryptographic Hash Function
Security
Collision Resistance
History of Hash Functions

2 How to Build a Hash Function
The Hash Function Cookbook
The Merkle-Damg̊ard Construction
The Sad News about Merkle-Damg̊ard
The MD/SHA Family
The SHA-1 Hash Function
The Sad News about the MD/SHA Family

3 The SHA-3 Competition
The First Phase
The Second Round Candidates
The Third Round
The Outcome of SHA-3

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 37/ 58



Introduction How SHA-3 First Second Third Outcome

The First Phase of the SHA-3 Competition

◮ January 2007: NIST announces that a SHA-3
competition will be held. Asks the public for comments.

◮ November 2007: NIST publishes the official rules of the
competition.

◮ August 2008: First submission deadline.

◮ October 2008: The real deadline.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 38/ 58



Introduction How SHA-3 First Second Third Outcome

The First Phase of the SHA-3 Competition

◮ January 2007: NIST announces that a SHA-3
competition will be held. Asks the public for comments.

◮ November 2007: NIST publishes the official rules of the
competition.

◮ August 2008: First submission deadline.

◮ October 2008: The real deadline.

◮ 64 candidates were submitted.

◮ NIST went over them, and identified 51 which satisfied a
minimal set of requirements.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 38/ 58



Introduction How SHA-3 First Second Third Outcome

The First Phase of the SHA-3 Competition

◮ January 2007: NIST announces that a SHA-3
competition will be held. Asks the public for comments.

◮ November 2007: NIST publishes the official rules of the
competition.

◮ August 2008: First submission deadline.

◮ October 2008: The real deadline.

◮ 64 candidates were submitted.

◮ NIST went over them, and identified 51 which satisfied a
minimal set of requirements.

Let the games begin!

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 38/ 58



Introduction How SHA-3 First Second Third Outcome

Welcome to the Wild West

Candidate Candidate Candidate Candidate Candidate

Abacus ARIRANG AURORA Blake Blender

BMW Boole Cheeta CHI CRUNCH

CubeHash DCH Dynamic SHA Dynamic SHA2 ECHO

ECOH EDON-R Enrupt ESSENCE FSB

Fugue Grøstl Hamsi JH KECCAK

Khichidi-1 Lane Luffa LUX MCSSHA-3

MD6 MeshHash NaSHA NKS2D SANDstorm

Sarmal Sgáil Shabal SHAMATA SIMD

Skein SHAvite-3 Spectral Hash StreamHash SWIFFTX

Tangle TIB3 Twister Vortex WaMM

Waterfall

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 39/ 58



Introduction How SHA-3 First Second Third Outcome

What a Break is?

◮ There is an ongoing debate what a broken hash function
is.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 40/ 58



Introduction How SHA-3 First Second Third Outcome

What a Break is?

◮ There is an ongoing debate what a broken hash function
is. Even from the theoretical point of view.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 40/ 58



Introduction How SHA-3 First Second Third Outcome

What a Break is?

◮ There is an ongoing debate what a broken hash function
is. Even from the theoretical point of view.

1 Practical.
2 Close to Practical.
3 (Time, Memory) is better then for generic attacks (e.g.,

time-memory tradeoff attacks, birthday attack).
4 Time × Memory is less than required in generic attacks.
5 Money for finding {collision, second preimage, preimage}

in a given time frame is less than for generic attacks.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 40/ 58



Introduction How SHA-3 First Second Third Outcome

What NIST did?

◮ At that point NIST had 27 broken submissions out of 51.

◮ They discarded the broken ones (24 left).

◮ MD6 was withdrawn (23 left).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 41/ 58



Introduction How SHA-3 First Second Third Outcome

What NIST did?

◮ At that point NIST had 27 broken submissions out of 51.

◮ They discarded the broken ones (24 left).

◮ MD6 was withdrawn (23 left).

◮ To further reduce the list of candidates to about 15, they
decided to not select candidates which “has no real
chance to be selected as SHA-3”.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 41/ 58



Introduction How SHA-3 First Second Third Outcome

What NIST did?

◮ At that point NIST had 27 broken submissions out of 51.

◮ They discarded the broken ones (24 left).

◮ MD6 was withdrawn (23 left).

◮ To further reduce the list of candidates to about 15, they
decided to not select candidates which “has no real
chance to be selected as SHA-3”.

◮ NIST allowed tweaks (small changes which do not
invalidate previous analysis).

◮ And in July 2009 announced the second round candidates.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 41/ 58



Introduction How SHA-3 First Second Third Outcome

Welcome to the Second Round

Candidate Candidate Candidate Candidate Candidate

Blake BMW CubeHash ECHO Fugue

Grøstl Hamsi JH KECCAK Luffa

Shabal SHAvite-3 SIMD Skein

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 42/ 58



Introduction How SHA-3 First Second Third Outcome

Security Evaluation

◮ Besides Hamsi, no attacks on the full hash functions on
the other 13 candidates are expected⋆.

◮ Some attacks on the full compression function exist
(BMW, CubeHash, Grøstl, KECCAK, Luffa, Shabal,
SHAvite-3, SIMD).

◮ These attacks do not scale to the full hash function (at
the moment).

◮ Some attacks on almost the full compression function
(ECHO, FUGUE, Skein).

◮ Some primitives received little cryptanalytic attention.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 43/ 58



Introduction How SHA-3 First Second Third Outcome

The Story of Shabal

◮ Shabal was submitted with a security
proof (compression function is secure
⇒ hash function is secure).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 44/ 58



Introduction How SHA-3 First Second Third Outcome

The Story of Shabal

◮ Shabal was submitted with a security
proof (compression function is secure
⇒ hash function is secure).

◮ Shabal’s compression function can be
easily distinguished.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 44/ 58



Introduction How SHA-3 First Second Third Outcome

The Story of Shabal

◮ Shabal was submitted with a security
proof (compression function is secure
⇒ hash function is secure).

◮ Shabal’s compression function can be
easily distinguished.

◮ Shabal’s team fix the proof.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 44/ 58



Introduction How SHA-3 First Second Third Outcome

The Story of Shabal

◮ Shabal was submitted with a security
proof (compression function is secure
⇒ hash function is secure).

◮ Shabal’s compression function can be
easily distinguished.

◮ Shabal’s team fix the proof.

◮ A new distinguishing attack on Shabal⋆

is introduced. Where Shabal⋆ is secure
according to the new proof. . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 44/ 58



Introduction How SHA-3 First Second Third Outcome

The Story of Shabal

◮ Shabal was submitted with a security
proof (compression function is secure
⇒ hash function is secure).

◮ Shabal’s compression function can be
easily distinguished.

◮ Shabal’s team fix the proof.

◮ A new distinguishing attack on Shabal⋆

is introduced. Where Shabal⋆ is secure
according to the new proof. . .

◮ Luckily for Shabal — not so easy to
get to Shabal⋆.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 44/ 58



Introduction How SHA-3 First Second Third Outcome

Performance Evaluation — Software

◮ Some teams had many people on them. Some not.

◮ All teams submitted C code, but not all submitted
assembler code, or optimized per-platform code.

◮ Some teams supply measurements using method A, some
by using method B, . . .

◮ Some teams supply measurements on a machine type A,
some machine type B, . . .

◮ Some teams used compiler X, some Y, . . .

◮ Some teams had . . .

So how can you compare the speed?!?!?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 45/ 58



Introduction How SHA-3 First Second Third Outcome

Performance Evaluation — Software (cont.)

◮ eBASH — An effort to run everything everywhere.

1 Strong points: lots of machines, easy to submit a new
implementation.

2 Weak points: still someone needs to implement, takes
time for new implementations to be measured, some
measurements are inconsistent.

3 Measurement method can be “attacked”: submit a hash
function with a message block size of 16,000 bytes.

◮ sphlib — An effort to implement everything by one guy
(without using per-CPU optimization) in C.

1 Strong point: portable code is sometimes important.
2 Weak points: based on a one-man show (who is actually

a submitter of Shabal), why not to use per-CPU
optimizations? why only C?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 46/ 58



Introduction How SHA-3 First Second Third Outcome

eBASH — A Glimpse

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 47/ 58



Introduction How SHA-3 First Second Third Outcome

eBASH — A Glimpse (cont.)

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 48/ 58



Introduction How SHA-3 First Second Third Outcome

Software Performance — Recent 32-bit Platforms

1 BMW-256 (6.9–9.7 cpb), BLAKE-32 (7.0–10.1 cpb),
SIMD-256 (8.8–13.2 cpb), CubeHash16/32-256 (9.3–13.0
cpb)

2 Luffa-256 (12.3–18.5 cpb), SHA-256 (14.8–19.8 cpb),
FUGUE-256 (15.7–21.1 cpb), KECCAK (16.4–21.8 cpb),
Skein-256 (18.0–20.8 cpb)

3 JH-256 (16.6–29.2 cpb), Grøstl-256 (20.3–27.0 cpb)

4 Hamsi (24.5–32.8 cpb), SHAvite-3256 (25.6–31.7 cpb),
ECHO-256 (29.2–35.9 cpb)

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 49/ 58



Introduction How SHA-3 First Second Third Outcome

Software Performance — Recent 32-bit Platforms

1 BMW-512 (4.2–5.7 cpb), Shabal-512 (7.7–12.4 cpb)

2 CubeHash16/32-256 (9.3–13.0 cpb), SIMD-512
(10.4–14.6 cpb), BLAKE-64 (12.6–16.1 cpb), Skein-512
(14.2–17.6 cpb), SHA-512 (15.5–20.6 cpb), KECCAK
(17.2–23.1 cpb)

3 JH-512 (16.7–29.2 cpb), Luffa-512 (22.3–27.4 cpb)

4 Grøstl-512 (29.4–37.7 cpb)

5 SHAvite-3512 (41.7–49.0 cpb)

6 ECHO-256 (50.8–60.68 cpb)

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 50/ 58



Introduction How SHA-3 First Second Third Outcome

Performance Evaluation — Hardware

◮ Less people working on hardware implementation.

◮ More optimization targets (throughput vs. size vs. energy
consumption)

◮ More technologies (ASIC vs. FPGA).

◮ Less common to share the “code”.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 51/ 58



Introduction How SHA-3 First Second Third Outcome

The Third Round

◮ In a few months, NIST would announce the five (±1)
finalists.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 52/ 58



Introduction How SHA-3 First Second Third Outcome

The Third Round

◮ In a few months, NIST would announce the five (±1)
finalists.

◮ The remaining finalists will be attacked, analyzed,
implemented, and assessed for another year and a half.

◮ Then NIST will pick the new SHA-3.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 52/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — My Guesses

Things which will label this entire thing as a waste of
resources:

◮ Selecting something which offers less security than
“optimal”.

◮ Selecting something much slower than SHA.

◮ If performance requirements much larger than SHA.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 53/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — My Guesses

Things which will label this entire thing as a waste of
resources:

◮ Selecting something which offers less security than
“optimal”.

◮ Selecting something much slower than SHA.

◮ If performance requirements much larger than SHA.

In other words, NIST will pick the fastest secure-enough
SHA-3 finalist.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 53/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — My Guess (Compression Functions)

◮ Performance not much worse than SHA-256/-512.

◮ Implementable on 8-bit platforms.

◮ ASIC speeds that can reach 5 Gbps.

◮ Possible to implement with “restricted” memory.

◮ RFID will not play any role.

◮ Good differential and linear properties.

◮ Known and well-understood components (e.g., XOR
vs. addition).

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 54/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — The True Waste of Effort

◮ SHA-3 took quite a lot of effort — analysis and
implementation.

◮ Many cryptanalysts spent a lot of time designing their
own submission.

◮ Then, they worked hard on breaking other SHA-3
candidates.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 55/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — The True Waste of Effort

◮ SHA-3 took quite a lot of effort — analysis and
implementation.

◮ Many cryptanalysts spent a lot of time designing their
own submission.

◮ Then, they worked hard on breaking other SHA-3
candidates.

◮ Hence, little time to work on SHA-1/SHA-2 . . .

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 55/ 58



Introduction How SHA-3 First Second Third Outcome

SHA-3 — The True Waste of Effort

◮ SHA-3 took quite a lot of effort — analysis and
implementation.

◮ Many cryptanalysts spent a lot of time designing their
own submission.

◮ Then, they worked hard on breaking other SHA-3
candidates.

◮ Hence, little time to work on SHA-1/SHA-2 . . .

◮ What if this is all a scheme to make cryptanalysts work
hard to extend SHA-1/2’s lifetime?

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 55/ 58



Introduction How SHA-3 First Second Third Outcome

How Can You Help?

◮ Analysis — try to break candidates.

◮ Implementation — try to
implement:

1 Optimize previous
implementations.

2 New machines and platforms.
3 Hardware implementations —

ASICs and FGPAs.
4 Side-channel resistant

implementations

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 56/ 58



Introduction How SHA-3 First Second Third Outcome

How Can You Help — Inside Linux?

◮ In the latest stable kernel
(2.6.35.7), I’ve (quickly) counted
three implementations of MD5.
Why?

◮ Make the necessary changes so that
MD5 certificates will be phased out.

◮ Replace MD5 by good hash
functions.

◮ And prepare for the day that SHA-1
will be insufficient.

◮ Lay the foundations for crypto
agility in the kernel.

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 57/ 58



Introduction How SHA-3 First Second Third Outcome

Questions?

Thank you for your Attention!

Orr Dunkelman The Hitchhiker’s Guide to the SHA-3 Competition 58/ 58


	Introducing Cryptographic Hash Functions
	What is a Cryptographic Hash Function
	Security
	Collision Resistance
	History of Hash Functions

	How to Build a Hash Function
	The Hash Function Cookbook
	The Merkle-Damgård Construction
	The Sad News about Merkle-Damgård
	The MD/SHA Family
	The SHA-1 Hash Function
	The Sad News about the MD/SHA Family

	The SHA-3 Competition
	The First Phase
	The Second Round Candidates
	The Third Round
	The Outcome of SHA-3


