
GPIO, SPI and I2C from Userspace, the True Linux
Way

Baruch Siach
baruch@tkos.co.il

Tk Open Systems

June 27, 2011

This work is released under the Creative Commons BY-SA version 3.0 or later.
The diagrams in slides 6, 7, 8, 11, and 12 are by Wikipedia, and are licensed under
the Creative Commons Attribution-Share Alike 3.0 Unported license

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



What is General Purpose Input/Output (GPIO)?

Pin connection two electronic components (chips)

Voltage is held at one of two level to indicate 1 or 0 logic

Controlled by one chip, sensed by the other

Usually grouped in banks

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



GPIO Chip Capabilities

Per GPIO pin configuration

Configure pin direction mode to input or output

Input mode:

Sense the logic level
Interrupt source (asynchronous notification)

Output mode:

Set voltage logic level to 0 or 1

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Linux GPIO Userspace Interface Overview

Documented in Documentation/gpio.txt

Part of the gpiolib framework, originally by David Brownell
(R.I.P.)

Since kernel version 2.6.27

GPIO ID numbers are set by the platform code (under arch/)

GPIO drivers are under drivers/gpio/ (e.g. pl061.c)

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Linux GPIO Userspace Interface Details

GPIO control interface is via sysfs under /sys/class/gpio, and
includes the following control files:

export Make a specific GPIO pin available for userspace
control. Write the pin number N (e.g. ”55”, ASCII);
the gpioN directory should appear.

gpioN/direction Write ”in” or ”out” to set pin direction. Write
”high” or ”low” to set direction to output, with
initial value, atomically.

gpioN/value Read the current pin status in input. For output,
write ”0” or ”1” to set the pin status. To get change
notification (interrupt) lseek() to end of file, and
either poll() for POLLPRI and POLLERR, or select()
with the file descriptor in exceptfds.

gpioN/edge Write ”none”, ”rising”, ”falling”, or ”both” to select
the signal that makes poll() return.

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



What is Serial Peripheral Interface (SPI)?

SPI
Master

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

Synchronous serial digital data link by Motorola

SPI master controls

CLK: synchronization clock
SS or CS: slave select or chip-select; when active the slave is
allows to talk
MOSI: master out, slave in; carries data from master to slave

SPI slave controls

MISO: master in, slave out; carries data from slave to master

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



SPI Timing Diagram

CLK

SS

MOSI b7 b6 b5 b4 b3 b2 b1 b0

MISO b7 b6 b5 b4 b3 b2 b1 b0

SS signals the transaction boundaries

Data is valid at the rising/first clock edge (SPI mode 0)

Bytes are sent MSB first

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Multiple SPI Slaves Diagram

SPI
Master

SCLK
MOSI
MISO
SS1
SS2
SS3

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

SPI
Slave

SCLK
MOSI
MISO
SS

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Userspace Interface for Basic SPI Transfer

Documented in Documentation/spi/spidev

Uses the SPI kernel framework, also by David Brownell

Since kernel version 2.6.27

SPI master drivers are under drivers/spi/ (e.g.
spi gpio.c)

Kernel platform code registers the ”spidev” platform device

Creates character device nodes at /dev/spidevB.C where:

B is the SPI bus (master) number
C is the chip-select number of specific SPI slave

read() for read only SPI transaction, with a single chip-select
activation

write() for write only SPI transaction, with a single
chip-select activation

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Userspace Interace for Full Duplex SPI Transfer

1 #include <linux/types.h>

2 #include <linux/spi/spidev.h>

3

4 #define RX_LEN 32

5

6 struct spi_ioc_transfer xfer [2];

7 unsigned char buf[RX_LEN ];

8

9 memset(xfer , 0, sizeof xfer);

10 memset(buf , 0, sizeof buf);

11

12 buf [0] = 0xaa;

13 xfer [0]. tx_buf = (unsigned long) buf;

14 xfer [0]. len = 1;

15

16 xfer [1]. rx_buf = (unsigned long) buf;

17 xfer [1]. len = RX_LEN;

18

19 ioctl(fd, SPI_IOC_MESSAGE (2), xfer);

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



What is Inter-Integrated Circuit (I2C) and System Message
Bus (SMBus)?

Vdd
SDA
SCL

Rp

uC
Master

uC
SlaveSlave

ADC
Slave
DAC

Two wires are controlled by the master and slaves according
to the protocol:

SCL: Serial Clock
SDA: Serial Data

Each slave has a 7 bit address

The 7 MSB of the first transmitted byte are slave address

The LSB of this byte indicates read (1), or write (0)

SMBus is a subset of I2C, with a stricter protocol definition

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



I2C Timing Diagram

SDA

SCL

PS B1 B2 BN

Transfer starts with START bit (S), SDA pulled low, while
SCL stays high

Data bit transfered at SCL rise

Transfer end with a STOP bit (P), SDA rises, while SCL stays
high

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Userspace Interface for I2C / SMBus

Documented in Documentation/i2c/dev-interface

Since the beginning of kernel 2.4 era

I2C master drivers are under drives/i2c/busses/ (e.g.
i2c-designware.c)

Load the i2c-dev kernel module to create device nodes

Each I2C master gets a character device node at /dev/i2c-N,
where N is the master ID number

read() and write() can do single direction transfer, but
their use is rare

ioctl() does combined transfers (read and write in one
transfer)

For some convenient ioctl() wrappers include the
i2c-dev.h file from i2c-tools

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way



Userspace Interface for I2C / SMBus, Example

1 /* NOTE: header from i2c -tools , not the kernel */

2 #include "i2c -dev.h"

3

4 int val;

5 uint8_t val8 = 0xaa;

6 uint16_t val16 = 5555;

7

8 /* set slave address to 0x44 */

9 ioctl(fd, I2C_SLAVE , 0x44);

10

11 /* read byte (8 bit) value from register 0x0a */

12 val = i2c_smbus_read_byte_data(fd , 0x0a);

13

14 /* read word (16 bit) value from register 0x1a */

15 val = i2c_smbus_read_word_data(fd , 0x1a);

16

17 /* write byte (8 bit) value in register 0x2a */

18 val = i2c_smbus_write_byte_data(fd , 0x0a , val8);

19

20 /* write word (16 bit) value in register 0x3a */

21 val = i2c_smbus_write_word_data(fd , 0x1a , val16);

Baruch Siach baruch@tkos.co.il GPIO, SPI and I2C from Userspace, the True Linux Way


