
How to Participate in the Linux Kernel
Development (and Why)

Baruch Siach
baruch@tkos.co.il

Tk Open Systems

October 10, 2011

This work is released under the Creative Commons BY-SA version 3.0 or later.

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Introduction: The Linux Kernel Software Project

New release every three months

More than 8,000,000 lines of code

About 10,000 patches in each release

More than 1000 developers participate in each release

You can participate too

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Why Bother?

The kernel development process tends to be time consuming and
frustrating at times, so why bother? Here are a few reasons:

Improve code quality; get code review from the experts

Avoid common coding pitfalls:

Incorrect use of kernel API
Wrong hardware initialization sequence

Learn better ways to do what you want

Influence the kernel development decision making

The case of Linux Security Module framework (non) removal
Kernel people appreciate code rather than talk 1

Automatic availability of your feature to all users

Automatic maintenance of your code

Internal kernel API tend to change as needed
Only in-kernel code gets updated when the API changes

Bug fixes from users and developers
1“Talk is cheap. Show me the code.” - Linus Torvalds (Aug 25, 2000)

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)

http://lkml.org/lkml/2000/8/25/132


The Kernel Release Schedule

1 Kernel subsystem maintainers collect reviewed and tested
patches for kernel version N until the release of N-1.

2 Linus releases Kernel version N-1; the two weeks “merge
window” for kernel version N begins

3 During the merge window Linus takes patches for kernel
version N from subsystem maintainers

4 The merge window ends when Linus releases -rc1 (first
release candidate) of kernel version N

5 Every week Linus releases another -rc kernel
Only bug fixes are accepted at this stage

6 Somewhere between -rc6 and -rc9, Linus releases kernel
version N

7 Kernel version N moves to the -stable team, and receives
bug fixes until a little after the release of kernel version N+1

8 Some special kernel versions are maintained longer by
interested parties under -longterm

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Overview of the Patch Acceptance Process

1 Develop a feature or fix a bug, and test

2 Send a patch to the maintainer(s), and Cc the mailing list
3 Listen to comments, fix, and resend the patch

If you believe a suggested change is wrong, explain why

4 Repeat the last step as necessary

5 Wait for the subsystem maintainer to apply your patch

6 Be responsive to problem reports regarding your patch, and fix
them

7 If all goes well, Linus pulls the subsystem maintainer patches
during the merge window, including yours; your patch is now
in the “mainline kernel”

8 Sometimes long term maintenance of your code is necessary

Neglecting to maintain your code may lead to its removal in
the long run, if nobody else shows interest

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Code Licensing

Contributed code license must be compatible with the GNU
General Public License version 2 (GPL v2)

If you write the code as part of your job (contracted or hired),
you employer must be aware of the licensing requirement

This is of concern mainly in large and bureaucratic companies

No copyright assignment is required

Submitted patches must include a Signed-off-by: tag,
which bears legal significance

See the “Developer’s Certificate of Origin” in
Documentation/SubmittingPatches for details

Disclaimer: I am not a lawyer. If in doubt, consult your local legal
advisor.

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Which Kernel Version to Use as Development Base

Sometimes your work depends on features that are not present yet
in released kernels. In this case select your base development
kernel in the following descending order of precedence:

1 The latest released kernel

2 The last -rc development version

3 The development tree of the relevant subsystem

Do not base you work on the -next tree.

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Finding Patch Contacts

Locate the relevant subsystem entry in the kernel MAINTAINERS
file, and get the following:

Maintainer(s)

Mailing list

Development source tree (git, quilt, etc.)

Patchwork patch tracking website

Website

Example MAINTAINERS entry

LINUX FOR POWERPC (32-BIT AND 64-BIT)

M: Benjamin Herrenschmidt <benh@kernel.crashing.org>

M: Paul Mackerras <paulus@samba.org>

W: http://www.penguinppc.org/

L: linuxppc-dev@lists.ozlabs.org

Q: http://patchwork.ozlabs.org/project/linuxppc-dev/list/

T: git git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc.git

S: Supported

F: Documentation/powerpc/

F: arch/powerpc/

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Things to Do Before Sending a Patch

Make sure that your code matches the standard kernel coding
style as described in Documentation/CodingStyle

Write a short and clear description of the patch, and the
reason this patch is needed

This description becomes part of the permanent kernel git log
For fixes to an already released kernel, add the
“Cc: stable@kernel.org” tag
See examples below

Follow Documentation/SubmitChecklist

Test your code based on a new enough kernel

Rebase on newer kernels if they introduce relevant changes

Monitor the subsystem mailing list for patches that are
relevant to your work

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



How to Generate and Send a Patch Using git

1 When committing use the -s option of git commit to add
your Signed-off-by to the commit log

2 Generate a patch with git format-patch

Example of single patch generation with git

$ git format-patch -o /tmp HEAD^

3 Run scripts/checkpatch.pl on your patch
4 In a revised patch add meta changelog to the generated

.patch file(s)
This goes below the ’---’ line

5 Send the patch to relevant lists and maintainers

Example of single patch sending with git

$ git send-email \
--to ’Benjamin Herrenschmidt <benh@kernel.crashing.org>’ \
--cc linuxppc-dev@lists.ozlabs.org \
/tmp/powerpc-fix-something.patch

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Simple Patch Example

From: Baruch Siach <baruch@tkos.co.il>

To: Guennadi Liakhovetski <g.liakhovetski@gmx.de>

Cc: linux-media@vger.kernel.org, Baruch Siach <baruch@tkos.co.il>

Subject: [PATCH] v4l: soc_camera: fix bound checking of mbus_fmt[] index

When code <= V4L2_MBUS_FMT_FIXED soc_mbus_get_fmtdesc returns a pointer to

mbus_fmt[x], where x < 0. Fix this.

Signed-off-by: Baruch Siach <baruch@tkos.co.il>

---

drivers/media/video/soc_mediabus.c | 2 ++

1 files changed, 2 insertions(+), 0 deletions(-)

diff --git a/drivers/media/video/soc_mediabus.c b/drivers/media/video/soc_mediabus.c

index f8d5c87..a2808e2 100644

--- a/drivers/media/video/soc_mediabus.c

+++ b/drivers/media/video/soc_mediabus.c

@@ -136,6 +136,8 @@ const struct soc_mbus_pixelfmt *soc_mbus_get_fmtdesc(

{

if ((unsigned int)(code - V4L2_MBUS_FMT_FIXED) > ARRAY_SIZE(mbus_fmt))

return NULL;

+ if ((unsigned int)code <= V4L2_MBUS_FMT_FIXED)

+ return NULL;

return mbus_fmt + code - V4L2_MBUS_FMT_FIXED - 1;

}

EXPORT_SYMBOL(soc_mbus_get_fmtdesc);

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Patch with Version, Changelog, and Review Tag

From: Baruch Siach <baruch@tkos.co.il>

To: linux-kernel@vger.kernel.org

Cc: Andrew Morton <akpm@linux-foundation.org>, Indan Zupancic <indan@nul.nu>,

Greg KH <greg@kroah.com>, "H. Peter Anvin" <hpa@zytor.com>,

Alex Gershgorin <agersh@rambler.ru>, Baruch Siach <baruch@tkos.co.il>

Subject: [PATCHv3] drivers/misc: Altera active serial implementation

From: Alex Gershgorin <agersh@rambler.ru>

...

Reviewed-by: Indan Zupancic <indan@nul.nu>

Signed-off-by: Alex Gershgorin <agersh@rambler.ru>

Signed-off-by: Baruch Siach <baruch@tkos.co.il>

---

Changes in v3:

* Rename to altera_as for a better description of the driver scope

* Mention ESPC devices in the Kconfig help text

* Add a comment that explains why the static altera_as_devs arrays doesn’t

need locking protection

* Shorten too long delays

* Move the erase operation to a separate function

* Eliminate page_count in .write, use *ppos instead

Changes in v2:

...

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Patch Series

Split large changes into a series of smaller logical changes

Easier for reviewers and maintainers
Separate patches for different subsystems

The series must be “bisectable”; no single patch is allowed to
break the kernel build

Each patch in the series should be minimal

No need to reflect you own development history in the series
Don’t add something in one patch only to remove it in a later
one
With git, use interactive rebase (git rebase -i) to edit
earlier patches in a series

A series longer than 2 patches should include a cover letter

When emailing, the whole series should be in a single thread

All emails (except the first) include the In-Reply-To header
pointing to the first, which is the cover letter

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



How to Generate and Send a Patch Series Using git

1 Put your Signed-off-by tag in each patch
2 Generate the patch series with git format-patch

Example of patch series generation with git

$ git format-patch -o /tmp/myseries --cover-letter HEAD~5

3 Edit the cover letter (the file with the 0000 prefix)
Replace the SUBJECT HERE stub subject with something
sensible
Replace the BLURB HERE stub body text with an overall
description of your patch series
Add series change log when applicable

4 Send the patch series to relevant list and maintainers

Example of patch series sending with git

$ git send-email \
--to ’Benjamin Herrenschmidt <benh@kernel.crashing.org>’ \
--cc linuxppc-dev@lists.ozlabs.org \
/tmp/myseries/*.patch

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Patch Series Cover Letter Example

From: Baruch Siach <baruch@tkos.co.il>

To: Sascha Hauer <kernel@pengutronix.de>

Subject: [PATCH 0/4] mx25: add support for FEC on i.MX25 PDK

Cc: netdev@vger.kernel.org, Baruch Siach <baruch@tkos.co.il>,

linux-arm-kernel@lists.infradead.org

This patch series adds support for the FEC peripheral of the i.MX25 on the

i.MX25 PDK board.

The first two patches are fixes for compilation and run failures. The third

patch enables RMII if the FEC driver. Finally, the last patch adds the

necessary board support code (pads, clock, etc.)

The FEC fix seems like an ugly hack to me. Suggestions for a better solution

are welcome.

Baruch Siach (4):

mx25: s/NO_PAD_CTL/NO_PAD_CTRL/

mx25: don’t force input on FEC pins

fec: add support for Freescale i.MX25 PDK (3DS)

mx25: add support for FEC on i.MX25 PDK

arch/arm/mach-mx25/clock.c | 2 +

arch/arm/mach-mx25/devices.c | 19 ++++++++

arch/arm/mach-mx25/devices.h | 1 +

arch/arm/mach-mx25/mx25pdk.c | 40 ++++++++++++++++-

arch/arm/plat-mxc/include/mach/iomux-mx25.h | 64 +++++++++++++-------------

arch/arm/plat-mxc/include/mach/mx25.h | 4 ++

drivers/net/fec.c | 22 +++++++++

drivers/net/fec.h | 2 +

8 files changed, 121 insertions(+), 33 deletions(-)

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



The Review Process

Good patches ease the work of reviewers

Pay attention to comments, and reply to the point

Sooner or later you are likely to see insulting language flying
at your direction; don’t take it personally

Fix what you’re asked to fix, or else explain why this is not
needed

Document changes to your patch in the subsequent
submissions

Wait a few days before sending another round of patches

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



What to do When You get No Response

Wait

Update (rebase) and repost your patch as necessary

Send polite ping messages

Monitor the mailing list, participate in related discussions, and
mention your patch

Cc Andrew Morton if the maintainer is not responsive

Cc the linux-kernel mailing list

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



After Your Patch has been Merged

There are several exposure levels of a merged patch in ascending
order:

The subsystems maintainers’ tree, and the -next tree

Linus’ tree

A released kernel

At each level you should:

Respond to reports of build failures and bugs

Send fixes to reported bugs promptly, especially regressions

Don’t forget to add “Cc: stable@kernel.org” as necessary

Respond to patches with bug fixes or improvement suggestions

Participate in the review of patches related to yours

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Further Info (1)

In-kernel documentation:

Documentation/HOWTO

“A Guide to the Kernel Development Process” at
Documentation/development-process/*

Documentation/SubmittingPatches

Documentation/SubmitChecklist

Documentation/SubmittingDrivers

Documentation/CodingStyle

Documentation/stable api nonsense.txt

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)



Further Info (2)

Recommended reading:

Dan J. Williams, Avoiding the OS abstraction trap
(http://lwn.net/Articles/454716/)

Jonathan Corbet, On multi-platform drivers
(http://lwn.net/Articles/457674/)

Jonathan Corbet, The platform problem
(http://lwn.net/Articles/443531/)

Andi Kleen , On submitting kernel patches
(http://halobates.de/on-submitting-patches.pdf)

Guides:

http://kernelnewbies.org/UpstreamMerge

Talks (video):

Jonathan Corbet: How kernel development goes wrong and
why you should be a part of it anyway (FOSDEM 2011)
http://www.youtube.com/watch?v=MzCIBZONf5M

Baruch Siach baruch@tkos.co.il How to Participate in the Linux Kernel Development (and Why)

http://lwn.net/Articles/454716/
http://lwn.net/Articles/457674/
http://lwn.net/Articles/443531/
http://halobates.de/on-submitting-patches.pdf
http://kernelnewbies.org/UpstreamMerge
http://www.youtube.com/watch?v=MzCIBZONf5M

