
Abel Gordon× Nadav Amit¤ Nadav Har’El×
Muli Ben-Yehuda×,¤ Alex Landau× Assaf Schuster¤ Dan Tsafrir¤

× IBM Research – Haifa
¤ Technion – Israel Institute of Technology

ELI: Bare-Metal Performance for I/O Virtualization

Partially supported by the European Community's Seventh Framework Programme([FP7/2001-2013])
under grant agreements number 248615 (IOLanes) and 248647 (ENCORE)

�

ELI – Haifux

� Virtualization already is an integral part of our systems

� Virtualization overhead is high for a common subset of
workloads, in particular I/O intensive workloads

� Overhead causes:
– Context switch cost (e.g. switches between the

hypervisor and the guests)
– Indirect cost (e.g. CPU cache pollution)
– Handling cost (e.g. handling external interrupts)

Background and Motivation

Bare-metal

virtualization
guest

hypervisor

(t) – single core

�

ELI – Haifux

I/O Intensive Workloads

� Best performing model: Device Assignment
(SR-IOV devices)

– The guest has direct access to a dedicated
physical device (DMA and MMIO)

– No hypervisor intervention
…except for interrupt handling

� Overhead still high compared to bare-metal (non-
virtual) [Adams06, Ben-Yehuda10, Landau11]

– Switches to the hypervisor due to external
interrupts arriving from the device

– Switches to the hypervisor due to interrupt
completions signaled by the guest

� Overhead is visible as [Liu10, Dong10]
– Lower throughput (when the CPU is saturated,

usually for small messages)
– Higher CPU consumption (when line rate is

attained, usually for big messages)
– Higher latency

�

ELI – Haifux

guest/host context switches (exits and entries)
handling cost (handling external interrupts and interrupt completions)

bare-metal

Baseline
guest

hypervisor

(time)

ELI
delivery

guest

hypervisor

ELI
delivery &
completion

guest

hypervisor

Physical
Interrupt

Interrupt
Completion

(a)

(b)

(c)

Interrupt
Injection

Interrupt
Completion

(d)

ELI: ExitLess Interrupts

�

ELI – Haifux

Related Work

� Polling
– Disables interrupts and polls the device for new events
– Adds latency, waste cycles, consumes power

� Hybrid [Dovrolis01, Mogul96, Itzkovitz99]

– Dynamically switches between interrupts and polling
– Default in Linux (NAPI) [Salim01]
– Hard to predict future interrupt rate

� Interrupt Coalescing [Zec02, Salah07, Ahmad11]
– Limits interrupt rate (sends only one interrupt per several events)
– Adds latency [Larsen09, Rumble11], might burst TCP traffic [Zec02], complex to

configure and change dynamically [Ahmad11,Salah08], adds variability

ELI is complementary to these approaches:
(1) Removes the virtualization overhead caused by the costly

exits and entries during interrupt handling
(2) Lets the guest control directly the interrupt rate and latency

�

ELI – Haifux

x86 Interrupt Handling

IDTIDTR

Limit

� Interrupts are asynchronous events generated by external entities such as I/O
devices

� x86 CPUs use interrupts to notify the system software about incoming events
� The CPU temporarily stops the currently executing code and jumps to a pre-

specified interrupt handler
� Hardware and software identifies interrupts using vector numbers.

Address

IDT Entry

IDT Entry

…

IDT Entry

Handler for vector 1

Handler for vector n

Handler for vector 2

Interrupt
Descrriptor
Table

IDT
Register

Interrupt handlers

�

ELI – Haifux

x86 Interrupt Handling in Virtual Environments

� Two IDTs
– Guest IDT: handles virtual interrupts created by the “virtual” hardware
– Host IDT: handles physical interrupts raised by the “physical” hardware

� If a physical interrupt arrives while the guest is running, the CPU forces a transition
to the hypervisor context (VM Exit)

– Required for correct emulation and isolation

Interrupt
handler

Physical
interrupt

Guest
IDT

VM

Hypervisor

Interrupt
handler

Host
IDT

Virtual
interrupt

VM ExitVM Exit VM EntryVM Entry

Raised by
physical
devices

Created and
injected by
software

�

ELI – Haifux

Shadow
IDT

ELI: ExitLess Interrupts - Delivery

� Allow interrupt delivery directly to the guest
– Configure the hardware to deliver all

interrupts to the guest (CPU only
supports all or nothing mode)

– Control which interrupts should be
handled by the guest and which
interrupts should be handled by the
host using a shadow IDT

Hypervisor

Shadow
IDT

Interrupt
Handler

Assigned
Interrupt

Physical
Interrupt

Non-assigned
Interrupt
(#NP/#GP exit)ELI

Delivery

Guest
IDT

VM

IDT Entry

IDT Entry

…

IDT Entry

P=0

P=1

P=0

Handler

#NP

#NP

IDT Entry #GP

IDTR
Limit

�

ELI – Haifux

ELI: ExitLess Interrupts - Completion

� The guest OS signals interrupt completions writing to the Local Advance Programmable
Interrupt Controller (LAPIC) End-of-Interrupt (EOI) register

� Old LAPIC interface
– The guest accesses the LAPIC registers using regular load/stores to a pre-specified

memory page
– The hypervisor traps accesses to the LAPIC page (almost all registers)

� New LAPIC interface (x2APIC)
– The guest accesses LAPIC registers using Machine Specific Registers (MSRs)
– The hypervisor traps accesses to MSRs (LAPIC registers) using hardware virtualization

MSR bitmap capability

� ExitLess Completion
– Requires x2APIC
– ELI gives direct access only to the EOI register

	

ELI – Haifux

Evaluation

•Throughput scaled so 100% means bare-metal throughput
•Throughput gains over baseline device assignment are noted inside the bars
•CPU is saturated in the 3 benchmarks

Parameters:
• KVM uses EPT + Huge Pages (host only)
• Netperf: 256B messages
• Apache: stressed with apachebench (4 threads requesting 4KB static pages)
• Memcached: stressed with memslap (4 threads / 64 concurrent requests, key size = 64B,
value size = 1024B, get/set ratio = 9:1)
•x2APIC behavior emulated on a non-x2APIC hardware

		

ELI – Haifux

Evaluation

98%89%67%Time in guest

98%83%60%Time in guest

100%85%60%% of bare-metal throughput

97%83%65%% of bare-metal throughput

99%94%69%Time in guest

98%92%60%% of bare-metal throughput

1K123K123KExits/s

Apache

NetPerf

Memcached

1.1K64K91KExits/s

0.8K44K102KExits/s

ELIELI
Delivery

Baseline

ELI removed most of the exits and almost achieved bare-metal performance!

	�

ELI – Haifux

Huge Pages

Netperf Apache

Memcached

(1)ELI significantly improved
performance even without huge
pages

(2)Huge pages are required to
achieve bare-metal performance

	�

ELI – Haifux

Computation vs. I/O ratio (modified netperf)

cycles/byte = CPU frequency (2.93GHz) / throughput

ELI’s improvement remains high even for 50Mbps (60 cycles/byte) because
NAPI and the NIC’s adaptive coalescing mechanism limit the interrupt
rate (interrupt rate is not always proportional to the throughput)

	�

ELI – Haifux

Interrupt Coalescing (netperf)

Even using maximum coalescing supported by the NIC (96�s),
ELI provides 10% performance improvement

	�

ELI – Haifux

Latency

100%27.93µsBare-metal

108%30.10µsELI delivery-only

102%28.51µsELI

129%36.14µsBaseline

% of bare-metalAvg. LatencyConfiguration

Netperf UDP Request Response

ELI substantially reduces the time it takes to deliver interrupts
to the guest, critical for latency-sensitive workloads.

	�

ELI – Haifux

Implementation

� Locating the shadow IDT for unmodified guests
– Shadow IDT must be mapped into the guest address space
– Use PCI BARs (MMIO regions) to force the guest OS (Linux & Windows) to

map and (keep mapped) additional memory pages
– Write-protect the shadow IDT

� Injecting virtual interrupts
– Use the original Guest IDT to inject a virtual interrupt

� Nested interrupts (a higher vector can interrupt a lower vector)
– Check if a physical interrupt is being handled by the guest before injecting a

virtual interrupt

	�

ELI – Haifux

Security, protection and isolation

� Threat: malicious guests might try consume interrupts, keep interrupts disabled or
signal invalid completions

� ELI defends itself against malicious guest using multiple mechanisms:
– Hardware Virtualization preemption timer to force exits (instead of relying on

timer interrupts)
– EOIs while no interrupt is being handled do not affect the system
– Periodically check shadow IDT mappings
– Protect critical interrupts

• Deliver to a non-ELI core
• Send spurious Interrupts (to re-create a possible lost interrupt)
• Redirect as NMI (NMIs can be configured to force an exit unconditionally)
• Use IDTR limit (reserve highest vectors for critical host interrupts)

	�

ELI – Haifux

Future Work

� Reduce frequency of exits caused by para-virtual I/O devices
– Use ELI to send notifications from the host to the guest (running on a different

cores) without forcing an exit

� Reduce frequency of exits caused by non-assigned interrupts
– Shadow the interrupt handlers and batch/delay interrupts (host interrupts or

other guest interrupts)

� Reduce exits required to inject a virtual interrupt
– Use ELI to asynchronously inject virtual interrupts from a different core

� Improve performance of SMP workloads with high Inter-processor interrupt (IPI)
rate

– Send and IPI directly to a vcpu running on a different core without forcing an
exit

	�

ELI – Haifux

Conclusions

� High virtualization performance requires the CPU to spend most of the
time running the guest (useful work) and not the host (handling
exits=overhead)

� x86 virtualization requires host involvement (exits!) to handle interrupts
(critical path for I/O workloads)

� ELI lets the guest handle interrupts directly (no exits!) and securely,
making it possible for untrusted and unmodified guests reach near bare-
metal performance

�

ELI – Haifux

Questions ?

�	

ELI – Haifux

Backup

��

ELI – Haifux

Injection Mode and Nested Interrupts

� ELI has two mode of operations:
– Direct Mode: physical interrupts are delivered trough the shadow IDT and do

not force an exit (only if NP#). MSR Bitmap is configured to avoid exits on EOI
– Injection Mode: physical interrupts and EOI force an exit. Virtual interrupts are

delivered through the Guest IDT

� The guest runs most of the time in Direct Mode

� The hypervisor fall-back to Inject Mode when it needs to inject a “virtual” interrupt
– After the virtual EOI exit, the hypervisor switches back to Direct Mode

� A higher vector can interrupt a lower vector (Nested Interrupts)
– Before Injecting a virtual interrupt ELI checks the CPU interrupts in service

register (ISR)
– If the virtual interrupt has a lower vector than a physical interrupt being

handled, the hypervisor delays the injection.

��

ELI – Haifux

Breakdown

��

ELI – Haifux

Latency

Latency – Netperf UDP RR

