

ADVANCED OPENCL™ DEBUGGING

AND PROFILING – A CASE STUDY

Yaki Tebeka

Advanced Micro Devices

Fellow, Developer Tools

Budirijanto Purnomo

Advanced Micro Devices

Technical Lead, GPU Compute Tools

3 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

ABOUT OPENCL

OpenCL is FUN!

New programming language

Exposes the massively multithreaded GPU

And the CPU

A lot of horse power, optimized for parallel computing

Order of magnitude performance improvement!

4 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

OPENCL DEBUGGING AND PROFILING MODEL

However,

Debugging and profiling parallel processing applications is hard

On-time delivery of robust (bug-free) OpenCL applications is challenging

 It is almost impossible to optimize an OpenCL based application to fully utilize the available parallel

processing system resources

5 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

OPENCL DEBUGGING AND PROFILING MODEL

OpenCL is a “Black Box”

The application enqueues OpenCL commands

OpenCL’s runtime executes the commands

The developer cannot

– Debug the OpenCL kernels

– See the execution details

– View runtime loads

Application

6 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

gDEBuggerTM for Microsoft Visual Studio®

An OpenCL Debugger

– API Level

– Kernel Source Code

An OpenGL API level debugger

 Integrated into Microsoft Visual Studio

Provides the information a developer needs to

find bugs and optimize the application’s performance

7 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

DEMO

Uniform Random Noise Generator Sample

A sample application provided with AMD APP SDK

samples

Each thread generates a uniform random deviation and

applies to a pixel

OpenCL kernel computes the deviation using a linear

congruential generator proposed by Park and Miller

The average of four neighboring pixels is used as the

seed for each pixel

8 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

API Calls History View

Displayed a log of OpenCL and OpenGL API calls

Call details are displayed in the Properties View

9 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

gDEBugger Explorer

Displays OpenCL and OpenGL allocated objects

Marks OpenGL-OpenCL shared contexts

Focuses the GUI views on objects

Double-click displays each object in the appropriate view

10 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

Source Code and Call Stack

Displays C, C++ and OpenCL C source code

Enables setting source code breakpoints

Displays a combined C, C++ and OpenCL

C call stack

11 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

Watch views

Displays OpenCL kernel’s variable values and types

12 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

GDEBUGGER

Multi Watch View

Displays the values of an OpenCL kernel

variable across all work items and work

groups

The image view provides a graphics

representation of the data (each pixel

represents a single work item)

13 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

PROFILING WITH AMD APP PROFILER

AMD APP PROFILER

Analyzes and profiles OpenCL and DirectCompute application for AMD APUs and GPUs

 Integrates into Microsoft Visual Studio® 2008 and 2010

 Is available as a command line utility program for Windows and Linux platforms

Does not require a custom driver

Does not require source code or project modifications of the target application

14 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

PROFILING WITH AMD APP PROFILER

What can APP Profiler do for you?

Analyze and Profile OpenCL applications

– View API input arguments and output results

– Find API hotspots

– Determine top ten data transfer and kernel execution operations

– Identify failed API calls, resource leaks and best practices

15 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

PROFILING WITH AMD APP PROFILER

What can APP Profiler do for you?

Visualize OpenCL execution in a timeline chart

– View number of OpenCL contexts and command queues created and the relationships

between these items

– View host and device execution operations

– View data transfer operations

– Determine proper synchronization and load balancing

16 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

PROFILING WITH AMD APP PROFILER

What can APP Profiler do for you?

Analyze the OpenCL kernel execution for AMD Radeon GPUs

– Collect GPU Performance Counters

 The number of ALU, global and local memory instructions executed

 GPU utilization and memory access characteristics

 Shader Compiler VLIW packing efficiency

– Show the kernel resource usages

– View the AMD intermediate language (IL) and hardware disassembly (ISA)

17 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

DEMO

Uniform Random Noise Generator Sample

A sample application provided with AMD APP SDK

samples

Each thread generates a uniform random deviation and

applies to a pixel

OpenCL kernel computes the deviation using a linear

congruential generator proposed by Park and Miller

The average of four neighboring pixels is used as the

seed for each pixel

18 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

PROFILING WITH AMD APP PROFILER | DEMO

 Included with the AMD APP SDK v2

package

Available as a separate download from

http://developer.amd.com/AMDAPPProfiler

http://developer.amd.com/AMDAPPProfiler

19 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

SUMMARY

gDEBugger for Microsoft Visual Studio

API level debugging: view OpenCL buffers

OpenCL kernel debugging on the GPU

– Single step, set breakpoint and run to breakpoint

– Inspect variables

Call Stack and multi-watch view

AMD APP Profiler

Trace OpenCL API calls and visualize OpenCL execution

Determine kernel execution vs data transfer bottleneck

Determine synchronization issues

 Identify failed API calls, resource leaks and best practices

Collect and analyze GPU performance counters of an OpenCL kernel

20 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

OTHER AMD DEVELOPER TOOLS

CodeAnalyst: a system wide profiler to analyze the performance of applications (OpenCL ,C, C++, Java,

Fortran), drivers and system software on AMD CPU, GPU and APU.

– Optimize heterogeneous computing applications

– Find performance hotspots and issues using AMD

technology (time based profiling, event based

profiling, instruction based profiling, thread profiling)

– Tune both managed (Java) and native code

(OpenCL, C/C++, Fortran)

– Analyze programs on multi-core and NUMA

platforms

– Available as a standalone product (Windows, Linux)

and a Visual Studio plug-in

– http://developer.amd.com/CodeAnalyst/

http://developer.amd.com/CodeAnalyst/

22 | Advanced OpenCL™ Debugging and Profiling – a Case Study | June 2011

OTHER AMD DEVELOPER TOOLS

AMD APP KernelAnalyzer: a static analysis tool to compile, analyze and disassemble an OpenCL kernel

for AMD GPU products

– Compile and analyze for multiple Catalyst driver and

GPU device targets

– View kernel compilation warning and error

messages

– View AMD Intermediate Language (IL) and

hardware disassembly (ISA) code

– View various statistics generated by analyzing the

ISA code

– http://developer.amd.com/AMDAPPKernelAnalyzer/

http://developer.amd.com/AMDAPPKernelAnalyzer/

QUESTIONS

24 | Making OpenCL™ Simple with Haskell | June 2011

Disclaimer & Attribution
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions

and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited

to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product

differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. There is no

obligation to update or otherwise correct or revise this information. However, we reserve the right to revise this information and to

make changes from time to time to the content hereof without obligation to notify any person of such revisions or changes.

NO REPRESENTATIONS OR WARRANTIES ARE MADE WITH RESPECT TO THE CONTENTS HEREOF AND NO

RESPONSIBILITY IS ASSUMED FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS

INFORMATION.

ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE ARE EXPRESSLY

DISCLAIMED. IN NO EVENT WILL ANY LIABILITY TO ANY PERSON BE INCURRED FOR ANY DIRECT, INDIRECT, SPECIAL

OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF

EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AMD, the AMD arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. All other names used in

this presentation are for informational purposes only and may be trademarks of their respective owners.

OpenCL and OpenCL logo are trademarks of Apple Inc. used by permission by Khronos.

Microsoft and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other jurisdictions.

© 2011 Advanced Micro Devices, Inc. All rights reserved.

