
Ofer Rosenberg
PMTS, OpenCL SW Dev.

19/12/2011

OpenCL Do’s and Don’ts

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 2

Application code do’s and don’ts

Use OpenCL where its right

• Analyze the application code to find “hotspots”

• The hotspot code should be:

• Highly Parallelized

• Each instance is independent

• Remember the dispatch overhead

• GPU ~ a few 10us

• CPU also got “dispatch” overhead

D
is

p
a
tc

h

Actual Work

D
is

p
a
tc

h

Actual Work

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 3

Application code do’s and don’ts

Choosing the work size

• Global – use the largest possible

• Local – it’s complicated 

• Meet algorithm requirements on behavior

• Key element for optimization on GPU

• On CPU relevant only if there are barriers (fiber switch)

• Too large – register spill to memory, cache misses, etc.

• Too small – inefficient use of local memory, not hiding
latency

• No rule of thumb here – need experiments

1024

1
0
2
4

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 4

Memory Allocation

• Choose the right type based on
usage and device

• USE_HOST_PTR is highly suitable
for CPU only execution

• ALLOC_HOST_PTR is highly suitable
for multi-device execution

• Some HW vendors offer special
modes

Table taken from AMD APP Programming guide
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerat

ed_Parallel_Processing_OpenCL_Programming_Guide.pdf

http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 5

Memory Access

• OpenCL supports two patterns of Memory Access:

• Write/Execute/Read

• Unmap/Execute/Map

• Choosing a pattern is based on Application needs – the goal is to
minimize copies/allocations. Examples:

• If the Application receives and sends buffers with varying addresses,
choose read and writes

• If the Application processes the buffer (for example, analyze it),
choose map/unmap to avoid additional memory allocation

• Caution! Asynchronous operation

• Choose “blocking” to ensure memory is copied when the operation is
done

• Otherwise, monitor the event… (using “wait for event”, or event
callback)

clEnqueueRead/Write/Map/Unmap (queue, object, blocking, offset, size, *ptr, ...)

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 6

Asynchronous Copy (Transfer)

• Relevant only for GPUs (or non-Host devices)

• Available on some Vendor solutions (HW/SW)

• The basic idea is overlap of data transfer and code execution

• How to enable Async Copy ?

• Use two queues, one for data transfer and one for execution

• Create the right event dependency between them

• The SW & HW will utilize Async Copy automatically

Data
Transfer

Code
Execution

Data
Transfer

Code
Execution

Data
Transfer

Code
Execution

Data
Transfer

Code
Execution

Data
Transfer

Code
Execution

Data
Transfer

Code
Execution

Without

Async Copy

With

Async Copy Q1

Q2

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 7

The following slides are taken from
AMD OpenCL University Kit
http://developer.amd.com/zones/openclzone/universities/pages/default.aspx

Perhaad Mistry & Dana Schaa,
Northeastern University Computer Architecture Research Lab,
with Benedict R. Gaster, AMD
© 2011

http://developer.amd.com/zones/openclzone/universities/pages/default.aspx
http://developer.amd.com/zones/openclzone/universities/pages/default.aspx

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 8

N-body Simulation

• An n-body simulation is a simulation
of a system of particles under the
influence of physical forces like
gravity

 E.g.: An astrophysical system
where a particle represents a
galaxy or an individual star

• N2 particle-particle interactions

 Simple, highly data parallel
algorithm

• Allows us to explore optimizations of
both the algorithm and its
implementation on a platform

Source: THE GALAXY-CLUSTER-SUPERCLUSTER CONNECTION

http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html

8

http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 9

Algorithm

• The gravitational attraction between two bodies in space is an example of an
N-body problem

 Each body represents a galaxy or an individual star, and bodies attract each other
through gravitational force

• Any two bodies attract each other through gravitational forces (F)

•

• An O(N2) algorithm since N*N interactions need to be calculated

• This method is known as an all-pairs N-body simulation

9

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 10

Basic Implementation – All pairs

• All-pairs technique is used to
calculate close-field forces

• Why bother, if infeasible for
large particle counts ?

 Algorithms like Barnes Hut
calculate far field forces using
near-field results

 Near field still uses all pairs

 So, implementing all pairs
improves performance of both
near and far field calculations

• Easy serial algorithm

 Calculate force by each particle

 Accumulate of force and
displacement in result vector

10

for(i=0; i<n; i++)

{

 ax = ay = az = 0;

 / / Loop over al l par t ic les " j ”

 for (j=0; j<n; j++) {

 / /Calculate Displacement

 dx=x[j] -x [i] ;

 dy=y[j] -y [i] ;

 dz=z[j] -z [i] ;

 / / small eps is delta added for dx,dy,dz = 0

 invr= 1.0/sqr t(dx*dx+dy*dy+dz*dz +eps);

 invr3 = invr* invr* invr ;

 f=m[j]* invr3;

 / / Accumulate acceleration

 ax += f*dx;

 ay += f*dy;

 az += f*dx;

 }

 / / Use ax, ay, az to update part ic le posit ions

}

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 11

All Pairs – full implementation
Void NBody::nBodyCPUReference()

{

 //Iterate for all samples

 for(int i = 0; i < numBodies; ++i)

 {

 int myIndex = 4 * i;

 float acc[3] = {0.0f, 0.0f, 0.0f};

 for(int j = 0; j < numBodies; ++j)

 {

 float r[3];

 int index = 4 * j;

 float distSqr = 0.0f;

 for(int k = 0; k < 3; ++k)

 {

 r[k] = refPos[index + k] - refPos[myIndex + k];

 distSqr += r[k] * r[k];

 }

 float invDist = 1.0f / sqrt(distSqr + espSqr);

 float invDistCube = invDist * invDist * invDist;

 float s = refPos[index + 3] * invDistCube;

 for(int k = 0; k < 3; ++k) { acc[k] += s * r[k]; }

 }

 for(int k = 0; k < 3; ++k)

 {

 refPos[myIndex + k] += refVel[myIndex + k] * delT + 0.5f * acc[k] * delT * delT;

 refVel[myIndex + k] += acc[k] * delT;

 }

 }

}

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 12

Parallel Implementation

• Forces of each particle can be
computed independently

 Accumulate results in local memory

 Add accumulated results to
previous position of particles

• New position used as input to the
next time step to calculate new
forces acting between particles

N

N

Force between

all particles

Resultant

force – per

particle

N = No. of particles in system

Next Iteration

12

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 13

Hands on #1

Application code envelope is provided.

Partial kernel called “NBody_Kernels_basic.cl” is provided

1. Use the basic implementation on previous slide to create
OpenCL Kernel that implements N-body

2. Run on CPU device and GPU device, and compare

3. The code uses device-local buffers, and copy. Convert to
USE_HOST_PTR and Map/Unmap, run the two versions on
the CPU and compare

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 14

Naïve Parallel Implementation

Disadvantages of implementation
where each work item reads data
independently

 No reuse since redundant
reads of parameters for
multiple work-items

 Memory access= N reads*N
threads= N2

Similar to naïve non blocking
matrix multiplication in Lecture 5

14

__kernel void nbody(

 __global float4 * initial_pos,

 __global float4 * final_pos,

 Int N, __local float4 * result) {

 int localid = get_local_id(0);

 int globalid = get_global_id(0);

 result [localid] = 0;

 for(int i=0 ; i<N;i++) {

 //! Calculate interaction between

 //! particle globalid and particle i

 GetForce(globalid, i, initial_pos, final_pos,

 &result [localid]) ;

 }

 finalpos[globalid] = result[localid];

}

p items

/workgroup

N = No. of particles

All N particles read in by each

work item

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 15

Local Memory Optimizations

• Data Reuse

 Any particle read into compute unit can
be used by all p bodies

• Computational tile:

 Square region of the grid of forces
consisting of size p

 2p descriptions required to evaluate all p2
interactions in tile

 p work items (in vertical direction) read
in p forces

• Interactions on p bodies captured as an
update to p acceleration vectors

• Intra-work group synchronization shown
in orange required since all work items
use data read by each work item

p

p items per

workgroup

p forces read into local memory

p

p

tile0 tile1 tile N/p

p

tile0
tile1 tile N/p

p
N

/p

w

o
rk

 g
ro

u
p

s

15

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 16

Hands on #2

Application code and kernel code for tiled access is provided

1. Use the description to convert the kernel to use local
memory

2. Run on CPU device and GPU device, with and without local
memory and compare

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 17

OpenCL Implementation

• Data reuse using local memory

 Without reuse N*p items read per
work group

 With reuse p*(N/p) = N items read
per work group

 All work items use data read in by
each work item

• SIGNIFICANT improvement: p is
work group size (at least 128 in
OpenCL, discussed in occupancy)

• Loop nest shows how a work item
traverses all tiles

• Inner loop accumulates contribution
of all particles within tile

17

for (int i = 0; i < numTiles; ++i)

 {

 // load one tile into local memory

 int idx = i * localSize + tid;

 localPos[tid] = pos[idx];

 barrier(CLK_LOCAL_MEM_FENCE);

 // calculate acceleration effect due to each body

 for(int j = 0; j < localSize; ++j) {

 // Calculate acceleration caused by particle j on i

 float4 r = localPos[j] – myPos;

 float distSqr = r.x * r.x + r.y * r.y + r.z * r.z;

 float invDist = 1.0f / sqrt(distSqr + epsSqr);

 float s = localPos[j].w * invDistCube;

 // accumulate effect of all particles

 acc += s * r;

 }

 // Synchronize so that next tile can be loaded

 barrier(CLK_LOCAL_MEM_FENCE);

 }

}

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 18

Performance - Loop Unrolling

• We also attempt loop unrolling of the reuse local memory
implementation

 We unroll the innermost loop within the thread

• Loop unrolling can be used to improve performance by removing
overhead of branching

 However this is very beneficial only for tight loops where the branching
overhead is comparable to the size of the loop body

 Experiment on optimized local memory implementation

 Executable size is not a concern for GPU kernels

• We implement unrolling by factors of 2 and 4 and we see
substantial performance gains across platforms

 Decreasing returns for larger unrolling factors seen

18 Perhaad Mistry & Dana

Schaa, Northeastern Univ

Computer Architecture

Research Lab, with Ben

Gaster, AMD © 2011

| OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 19

Provided Nbody Example

• A N-body example is provided for
experimentation and explore GPU
optimization spaces

• Stand-alone application based on
simpler on AMD SDK formulation

• Three kernels provided

 Simplistic formulation

 Using local memory tiling

 Using local memory tiling with unrolling

• Note: Code is not meant to be a high
performance N-body implementation in
OpenCL

 The aim is to serve as an optimization
base for a data parallel algorithm Screenshot of provided N-body demo

running 10k particles on a AMD 5870

19

