119/12/2011

AMD1

The future is fusion

Application code do’s and don’ts

Use OpenCL where its right

Analyze the application code to find “hotspots”
The hotspot code should be: == o
Highly Parallelized | —==—

n Advanced Micro Devices - CodeAnalyst [C:\CodeAnalyst\Examples\matrix\matrix_omp\test\] - [Dual - Dual.tbp]
File Profile Tools Windows Help

Each instance is independent
Remember the dispatch overhead :
GPU ~ a few 10us |

CPU also got “dispatch” overhead 36

msver80.dil

‘ i Actual Work 8 Actual Work
(a)] Ia) y
I r g
@ 2 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD

The future is fusion

1024

Too large - register spill to memory, cache misses, etc. <
Too small - inefficient use of local memory, not hiding
latency
No rule of thumb here - need experiments
&
AN
o
—
\

The future is fusion

= 7 —
// N
(‘) 3 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD:‘
A

Memory Allocation

Table 4.3 OpenCL Memory Object Properties

« Choose the right type based on .- oot
usage and device

ped data si
<=32MiB: Pinned
host memory
MiB: Host
memory :dlfferent

Default
(none of the following flags)

« USE_HOST_PTR is highly suitable
for CPU only execution .

in context (unless
only device in
context is CPU;

then, host memory)

oL M ST PR De""'e memow
+ ALLOC_HOST_PTR is highly suitable [CS - =8
for multi-device execution , | ot it ey

s passed
- argument

it is unpinn
when memory i

Use Map Location deleted (unle :-:tc:?‘v

- Some HW vendors offer special sty | S e e
memory is used)
modes

Use Location directly

(different memory area

can be used on eac
map)

E_PERSISTENT MEM AM

Table taken from AMD APP Programming guide

Same as Default.

4 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD

The future is fusion

http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf
http://developer.amd.com/sdks/amdappsdk/assets/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf

ot

"""ﬁboéing a pattern is based on Application needs - the goal is to
minimize copies/allocations. Examples:

If the Application receives and sends buffers with varying addresses,
choose read and writes

If the Application processes the buffer (for example, analyze it),
choose map/unmap to avoid additional memory allocation

« Caution! Asynchronous operation
clEnqueueRead/Write/Map/Unmap (queue, object, , offset, size, *ptr,

Choose "“blocking” to ensure memory is copied when the operation is
done

Otherwise, monitor the event... (using “wait for event”, or event
callback)

5 | OpenCL Software | OpenCL Do’s and Don'ts | 12/2011 AMD@
The future is fusion

a1
i h

N o

._;,. (Transfer)

i W
| -
" ¢
e
. /A 1

(or non-Host devices)
‘ or solutions (HW/SW)

p of data transfer and code execution

Z58

v

« How to enable Async Copy ?
- Use two queues, one for data transfer and one for execution
- Create the right event dependency between them

« The SW & HW will utilize Async Copy automatically

6 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011

AMD:"

The future is fusion

are taken from
lverS|ty Kit

\com/zones/openclzone/universities/pages/default.aspx

Northeastern U _ve'rS|ty Computer Architecture Research Lab,
~with | A_,t-:l'ict R. Gaster, AMD

7 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD:‘
The future is fusion

http://developer.amd.com/zones/openclzone/universities/pages/default.aspx
http://developer.amd.com/zones/openclzone/universities/pages/default.aspx

- "Slmple highly data parallel
algorithm

» Allows us to explore optimizations of
both the algorithm and its |
implementation on a platform

Source: THE GALAXY-CLUSTER-SUPERCLUSTER CONNECTION

http://www.casca.ca/ecass/issues/1997-DS/W est/west-bil.html

The future is fusion

‘ 8 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD:‘

http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html
http://www.casca.ca/ecass/issues/1997-DS/West/west-bil.html

Algorithm

» The gravitational attraction between two bodies in space is an example of an
N-body problem

Each body represents a galaxy or an individual star, and bodies attract each other
through gravitational force

» Any two bodies attract each other through gravitational forces (F)

ColmEm L
FoG® L 4 |x__§

) Tl

F = Resultant Force Vector between particles i and |

G = Gravitational Constant

m, = Mass of particle |

m ;= Mass of particle |
Distance of particle i and |

For each particle this becomes

- m .
(G m;)" 2, | —=7

J=l=N ” J‘;_: ”:

« An O(N2) algorithm since N*N interactions need to be calculated

« This method is known as an all-pairs N-body simulation

@ 9 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD

The future is fusion

Basic Implementation — All pairs

« All-pairs technique is used to

calculate close-field forces for(i=0; i<n; i++)

{
« Why bother, if infeasible for

ax =ay =az = 0;

large particle counts ? for (j=0; j<n; j*+) {

Algorithms like Barnes Hut
calculate far field forces using
near-field results

Near field still uses all pairs

So, implementing all pairs
improves performance of both
near and far field calculations

« Easy serial algorithm
Calculate force by each particle }

Accumulate of force and }
displacement in result vector

@ 10 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011

dx=x[j]-x[i];
dy=y[j]-y[il;
dz=z[j]-z[i;

invr=1.0/sqrt(dx*dx+dy*dy+dz*dz +eps);
invrd = invr*invreinvr;
f=m[j]*invr3;

ax += f*dx;
ay += f*dy;
az += f*dx;

AMD

The future is fuzicn

{

}

All Pairs - full immplementation

Void NBody::nBodyCPUReference()

//iterate for all samples
for(inti = 0; i < numBodies; ++i)

{

}

int mylndex =4 *i;
float acc[3] = {0.0f, 0.0f, 0.0f};
for(intj = 0; j < numBodies; ++j)
{
float r[3];
intindex =4 *;
float distSqr = 0.0f;
for(intk = 0; k < 3; ++k)
{
r[k] = refPos[index + k] - refPos[myIndex + K];
distSqr += r[k] * r[K];
}

float invDist = 1.0f / sqrt(distSqr + espSqr);
float invDistCube = invDist * invDist * invDist;
float s = refPos[index + 3] * invDistCube;

for(intk = 0; k < 3; ++k) { acclk] +=s *r[k]; }
}

for(intk = 0; k < 3; ++k)

{
refPos[myindex + k] += refVel[myIindex + k] * delT + 0.5f * acc[k] * delT * delT;
refVel[mylndex + k] += acc[k] * delT;

}

te results in local memory

‘accumulated results to
- previous position of particles N

S L LR

"« New position used as input to the
next time step to calculate new
forces acting between particles

N = No. of particles in system

Force between Resultant
all particles force — per
particle
AMD "
The future: is fusion

//“
@ 12 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011

,nvelope is provided.
“NBody_Kernels_basic.cl” is provided

2. Run on CPU device and GPU device, and compare

3. The code uses device-local buffers, and copy. Convert to
USE_HOST_PTR and Map/Unmap, run the two versions on

the CPU and compare

AMD:"

13 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011
The future is fusion

Naive Parallel Implementation

Disadvantages of implementation
where each work item reads data
independently

No reuse since redundant
reads of parameters for
multiple work-items

Memory access= N reads*N
threads= N2

Similar to naive non blocking
matrix multiplication in Lecture 5

p items
/workgroup

N = No. of particles
All N particles read in by each
work item

@ 14 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD

}

kernel void nbody(
__global float4 * initial_pos,
__global float4 * final_pos,
Int N, __local float4 * result) {

int localid = get_local_id(0);
int globalid = get_global_id(0);
result [localid] = 0;

for(inti=0 ; i<N;i++) {
/I Calculate interaction between
II" particle globalid and particle i
GetForce(globalid, i, initial_pos, final_pos,
&result [localid]) ;
}

finalpos| globalid] = result] localid];

The future is fuzior

y Optimizations

p forces read into local memory

p
p items per
s workgroup
cle read into compute unit can
by all p bodies
tional tile:
~ Square region of the grid of forces tileg tile tile
consisting of size p
- 2p descriptions required to evaluate all p2 P
interactions in tile o _ : :
= tile, tile, tile nyp
- p work items (in vertical direction) read e
in p forces S 0
« Interactions on p bodies captured as an g
update to p acceleration vectors o
Z
» Intra-work group synchronization shown
in orange required since all work items
use data read by each work item P
15 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD“V'

The future: i s fusion

16 | OpenCL Software | OpenCL Do’s and Don‘ts | 12/2011 AMD:‘
The future is fusion

OpenCL Implementation

- Data reuse using local memory =G numTes =)
: i
Without reuse N*p items read per intide = i * localSize + fid
work group localPositid] = pos]idx];
With reuse p*(N/p) = N items read barrier(CLK_LOCAL_MEM_FENCE);

per work group

All work items use data read in by for(intj = 0;j <localSize; ++j) {

each work item float4 r = localPos[j] — myPos;

* SIGNIFICANT improvement: P IS float distSqr=rx*rx + ry*ry + rz*rz
work group size (at least 128 in ﬂoatinvDiﬂst=1-0f|/sqlrgdist8qr+epsSqr);

i : ts= [lw * invDistCube;

OpenCL, discussed in occupancy) s SRR Db

 Loop nest shows how a work item accH=s*r:
traverses all tiles }

. Inner loop accumulates contribution y CamenCEEOBALMEHLFEREE)
of all particles within tile }

@ 17 | OpenCL Software | OpenCL Do’s and Don’ts | 12/2011 AMD

The future is fuzior

e - Loop Unrolling

~ + Loop unrolling can be used to improve performance by removing
overhead of branching

However this is very beneficial only for tight loops where the branching
overhead is comparable to the size of the loop body

Experiment on optimized local memory implementation

Executable size is not a concern for GPU kernels

« We implement unrolling by factors of 2 and 4 and we see
substantial performance gains across platforms

Decreasing returns for larger unrolling factors seen

) 18 | OpenCL Software | OpenCL Do’s and Don'ts | 12/2011 AMD?;Q
The future: i s fusion

'AMD SDK formulation
cernels provided
. ‘Simplistic formulation

~ Using local memory tiling

~ Using local memory tiling with unrolling

« Note: Code is not meant to be a high
performance N-body implementation in
OpenCL

= The aim is to serve as an optimization
base for a data parallel algorithm

19 | OpenCL Software | OpenCL Do’s and Don‘ts | 12/2011 AMD“V'
The future: i s fusion

