NICTA

The Dos and Don’ts
of Benchmarking

Gernot Heiser
NICTA and UNSW

NICTA Funding and Supporting Members and Partners

0 ¢ :

« Australian Government Australian
2.t UNSW
:

Department of Broadband, Communications =2 University T BT OF AW soUTH Wit NSW MELBOURNE
and the Digital Economy @

. . E2R nevavesmyor v N (QUT]| THE UNIVERSITY
Australian Research Council 5.5.1 SYDNEY Gisenaiiid Wy Griffith i B oot

Government

APSys'13 PhD WS

()@
NICTA

... or how not to lie with benchmarks

DO YOU WANT THE

B,I\b%E%IE‘ %QN\E%U_ TEN-MINUTE EXPLANA-

MARK RESULTS? TION OF WHY THE
DATA ARE USELESS, OR HERE
A SIMPLE "HERE YOU Zgu

GO"7?)

www.dilbert.com scottadams®aol.com
13-a5-0Y £2004 Scott Adams, Inc./Dist. by UFS, Inc.

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Benchmarking in Research e

— NICTA
« Generally one of two objectives: “

— Show new approach improves performance
— Show otherwise attractive approach does not undermine performance

« Requirement: objectivity/fairness

— Selection of baseline
— Inclusion of relevant alternatives

— Fair evaluation of alternatives

« Requirement: analysis/explanation of results
— Model of system, incorporating relevant parameters
— Hypothesis of behaviour
— Results must support hypothesis

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Lies, Damned Lies, Benchmarks

* Micro- vs macro-benchmarks

« Standard vs ad-hoc

« Benchmark suites, use of subsets
 Completeness of results

« Significance of results

» Baseline for comparison

« Benchmarking ethics

 What is good — analysing the results

©2013 Gernot Heiser, NICTA

Micro- vs Macro-Benchmarks OQ

- Macro-benchmarks NICTA

— Use realistic workloads
— Measure real-life system performance (hopefully)

- Micro-benchmarks
— Exercise particular operation, e.g. single system call

— Good for analysing performance / narrowing down down performance
bottlenecks

critical operation is slower than expected
critical operation performed more frequently than expected
operation is unexpectedly critical (because it's too slow)

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Micro- vs Macro-Benchmarks (1@
NICTA

Benchmarking Crime: Micro-benchmarks only
- Pretend micro-benchmarks represent overall system performance

- Real performance can generally not be assessed with micro-
benchmarks

- EXxceptions:
— Focus is on improving particular operation known to be critical
— There is an established base line

Note: My macro-benchmark is your micro-benchmark
- Depends on the level on which you are operating
- Eg: Imbench

— ... Is a Linux micro-benchmark suite
— ... Is a hypervsior macro-benchmark

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Synthetic vs “Real-world” Benchmarks Oe

- Real-world benchmarks:

NICTA

real code taken from real problems
Livermore loops, SPEC, EEMBC, ...
execution traces taken from real problems
distributions taken from real use
file sizes, network packet arrivals and sizes
Caution: representative for one scenario doesn't mean for every scenario!

- may not provide complete coverage of relevant data space
- may be biased

- Synthetic benchmarks

created to simulate certain scenarios
tend to use random data, or extreme data
may represent unrealistic workloads

may stress or omit pathological cases

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Standard vs Ad-Hoc Benchmarks ® |

Why use ad-hoc benchmarks?

 There may not be a suitable standard benchmark
— Example: lack of standardised multi-tasking workloads

« (Cannot run standard benchmarks
— Limitations of experimental system

Why not use ad-hoc benchmarks?
« Not comparable to other work (unless they use the same)
* Poor reproducibility

Facit: Only use ad-hoc benchmarks if you have no other choice
« Justify well what you’re doing

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Benchmark Suites e

Widely used (and abused!) NICTA
Collection of individual benchmarks, aiming to cover all of relevant

data space

Examples: SPEC CPU{92|95|2000|2006}

Originally aimed at evaluating processor performance

Heavily used by computer architects

Widely (ab)used for other purposes

Integer and floating-point suite

Some short, some long-running

Range of behaviours from memory-intensive to CPU-intensive
behaviour changes over time, as memory systems change

need to keep increasing working sets to ensure significant memory
loads

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Obtaining an Overall Score for a BM Suite @ [

- How can we get a single figure of merit for the whole suite?
- Example: comparing 3 systems on suite of 2 BMs

Normalise to
System Y

Normalise to
System X

Rel
1 20 2.00 10 1.00 40 4.00
40 0.50 80 1.00 20 0.25
eom. mean 1.00 1.00 1.00

Geometric
mean?

Invariant
under
normalisation!

Arithmetic mean is meaningless for relative numbers

Rule: arithmetic mean for raw numbers,
geomeltric mean for normalised! [Fleming & Wallace, ‘86]

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Benchmark Suite Abuse e
NICTA

Benchmarking Crime: Select subset of suite

- Introduces bias
— Point of suite is to cover a range of behaviour
— Be wary of “typical results”, “representative subset”

- Sometimes unavoidable
— some don't build on non-standard system or fail at run time
— some may be too big for a particular system
eg, don't have file system and run from RAM disk...
- Treat with extreme care!
— can only draw limited conclusion from results
— cannot compare with (complete) published results
— need to provide convincing explanation why only subset
Other SPEC crimes include use for multiprocessor scalability
— run multiple SPECs on different CPUs
— what does this prove?

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Partial Data @

- Frequently seen in I/O benchmarks:
— Throughput is degraded by 10%
“Our super-reliable stack only adds 10% overhead”

C 0

Almost certainly

— Why is throughput degraded?
not true!

latency too high
CPU saturated?
— Also, changes to drivers or I/O subsystem may affect scheduling
interrupt coalescence: do more with fewer interrupts
— Throughput on its own is useless!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Throughput Degradation e
NICTA

Scenario: Network driver or protocol stack

— New driver reduces throughput by 10% — why?
— Compare:

100 Mb/s, 100% CPU vs 90 Mb/s, 100% €CPU

- 100 Mb/s, 20% CPU vs 90 Mb/s, 40%

— Correct figure of merit is processing cost per unit of dafs_ limited
- Proportional to CPU load divided by throughput

— Correct overhead calculation:

10 us/kb vs 11 us/kb: 10% overhead
2 us/kb vs 4.4 us/kb: 120% overhead

Benchmarking crime: Show throughput degradation only
... and pretend this represents total overhead

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Significance of Measurements (1@

All measurements are subject to random errors NICTA

« Standard scientific approach: Many iterations, collect statistics
« Rarely done in systems work — why?

« Computer systems tend to be highly deterministic
— Repeated measurements often give identical results
— Main exception are experiments involving WANSs

 However, it is dangerous to rely on this without checking!
— Sometimes “random” fluctuations indicate hidden parameters

Benchmarking crime: results with no indication of significance
Non-criminal approach:

- Show at least standard deviation of your measurements

- ... or state explicitly it was below a certain value throughout

- Admit results are insignificant unless well-separated std deviations

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance (e

Bare-minimum statistics: NICTA

- At minimum report the mean (u) and standard deviation (o)
— Don't believe any effect that is less than a standard deviation
10.241.5 is not significantly different from 11.5
— Be highly suspicious if it is less than two standard deviations
10.2£0.8 may not be different from 11.5
- Be very suspicious if reproducibility is poor (i.e. o is not small)
Distrust standard deviations of small iteration counts
— standard deviations are meaningless for small number of runs
— ... butokifeffect > o
— The proper way to check significance of differences is Student's t-test!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance (e

Obtaining meaningful execution times: NICTA

 Make sure execution times are long enough
— What is the granularity of your time measurements?
— make sure the effect you're looking for is much bigger

— many repetitions won't help if your effect is dominated by clock resolution
— do many repetitions in a tight loop if necessary

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Example: gzip from SPEC CPU2000 { @

. NICTA
Observations? Cache
« First iteration is special warmup
% Clock
e 20 Hz clock % resolution
— will not be able to %

observe any effects %

that account for less

than 0.1 sec

30

Lesson? lteration #

- Need a mental model of the system
— Here: repeated runs should give the same result

- Find reason (hidden parameters) if results do not comply!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance o
NICTA

Noisy data:
« sometimes it isn't feasible to get a “clean” system

— e.g. running apps on a “standard configuration”

— this can lead to very noisy results, large standard deviations
Possible ways out:
* ignoring lowest and highest result
 taking the floor of results

— makes only sense if you're looking for minimum

* but beware of difference-taking!

Both of these are dangerous, use with great care!

« Only if you know what you are doing
— need to give a convincing explanation of why this is justified

* Only if you explicitly state what you've done in your paper/report

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Real-World Example

Benchmark:
e 300.twolf from SPEC CPU2000 suite

Platform:

« Dell Latitude D600
— Pentium M @ 1.8GHz
— 32KiB L1 cache, 8-way
— 1MiB L2 cache, 8-way
— DDR memory @ effective 266MHz

 Linux kernel version 2.6.24

Methodology:
« Multiple identical runs for statistics...

©2013 Gernot Heiser, NICTA

()@
NICTA

APSys'13 PhD WS

twolf on Linux: What's going on? @

NICTA
240 400
Time
235 | L2 misses
Time - 221cy/miss
230 | Performance
295 | countgrs are your ~
- friends!
‘o 220 |
E
s 215 | 120 2
E §
g 200 1150 =
1 100
1 50
Subtract 221
cycles (123ns) ' 0
45 50

for each cache
miss

lteration #

©2013 Gernot Heiser, NICTA

twolf on Linux: Lessons? (Y®

- Pointer to problem was standard deviation NICTA

— 0o for “twolf” was much higher than normal for SPEC programs

- Standard deviation did not conform to mental model
— Shows the value of verifying that model holds
— Correcting model improved results dramatically

- Shows danger of assuming reproducibility without checking!

Conclusion: Always collect and analyse standard deviations!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance e

Avoid incorrect conclusions from pathological cases NICTA

« Typical cases:
— sequential access optimised by underlying hardware/disk controller...
— potentially massive differences between sequentially up/down
« pre-fetching by processor, disk cache
— random access may be an unrealistic scenario that destroys performance
» for file systems
— powers of two may be particularly good or particularly bad for strides
« often good for cache utilisation
— minimise number of cache lines used
« often bad for cache utilisation
— maximise cache conflicts
— similarly just-off powers (2"-1, 2"+1)
« What is “pathological” depends a lot on what you're measuring
— e.g. caching in underlying hardware

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance (e
NICTA

Use a model
* You need a (mental or explicit) model of the behaviour of your system
— benchmarking should aim to support or disprove that model
— need to think about this in selecting data, evaluating results
— eg: I/0 performance dependent on FS layout, caching in controller...
— cache sizes (HW & SW caches)
— buffer sizes vs cache size
« Should tell you the size of what to expect
— you should understand that a 2ns cache miss penalty can't be right

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Example: Memory Copy @ [

NICTA
Pipelining
600 — : 18
me
' throughput 16
500 |
_ l| 1 14 —
w
- || : . i
o 400 F 1|1 cache (32KiB) 12 3
= | 10 =
R] -1 -
c 300 t . a
| e &
(&) [=3
@ 200 | le 3
L L L2 cache (1MiB) 14 F
100 /] 2
0 L - - . - 1o

0 200 400 600 800 1000
Buffer size [KiB]

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

How to Measure and Compare Performance Oe

Understand your results! NICTA

* Results you don't understand will almost certainly hide a problem
— Never publish results you don't understand
« chances are the reviewers understand them, and will reject the paper
* maybe worse: someone at the conference does it

— this will make you look like an idiot
@)

O

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Relative vs Absolute Data @
NICTA

IMBMerch Lmency Dercheradia

From a real paper (IEEE CCNC’09):
No data other than this figure
No figure caption

Only explanation in text:

— “The L4 overhead compared to VLX ranges from
a 2x to 20x factor depending on the Linux
system call benchmark” |

No definition of “overhead factor” sl
No native Linux data

Benchmarking crime: Relative numbers only
« Makes it impossible to check whether results make sense

 How hard did they try to get the competitor system to perform?
— Eg, did they run it with default build parameters (debugging enabled)?

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Benchmarking Ethics (e

- Do compare with published competitor data, but... NICTA

— Ensure comparable setup
Same hardware (or convincing argument why it doesn’t matter)

— you may be looking at an aspect the competitor didn't focus on
eg: they designed for large NUMA, you optimise for embedded

- Be ultra-careful when benchmarking competitor’s system yourself

— Are you sure you're running the competitor system optimally?
you could have the system mis-configured (eg debugging enabled)
Do your results match their (published or else) data”?

— Make sure you understand exactly what is going on!
Eg use profiling/tracing to understand source of difference
Explain it!

Benchmarking crime: Unethical benchmarking of competitor
« Lack of care is unethical too!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

What Is “Good”? Oe
NICTA

- Easy if there are established and published benchmarks
— Eg your improved algorithm beats best published Linux data by x%
— But are you sure that it doesn't lead to worse performance elsewhere?
important to run complete benchmark suites
think of everything that could be adversely effected, and measure!
- Tricky if no published standard
— Can run competitor/incumbent

eg run Imbench, kernel compile etc on your modified Linux and
standard Linux

but be very careful to avoid running the competitor sub-optimally!
— Establish performance limits

ie compare against optimal scenario

micro-benchmarks or profiling can be highly valuable here!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

- Symbian null-syscall microbenchmark: .
— native: 0.24us, virtualized (on OKL4): 0.79us
- 230% overhead

- ARM11 processor runs at 368 MHz:

— Native: 0.24us =93 cy
— Virtualized: 0.79us = 292 cy
— Overhead: 0.55us = 199 cy
— Cache-miss penalty = 20 cy

- Model:

— native: 2 mode switches, 0 context switches, 1 x save+restore state
— virtualized: 4 mode switches, 2 context switches, 3 x save+restore state

o}

e
O

Expected
overhead?

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Performance Counters are Your Friends! OQ

Good or NICTA
bad?

D-cache miss

D-uTLB miss

Main-TLB miss

D-stall cycles

Total Cycles

©2013 Gernot Heiser, NICTA

More of the Same... OQ

NICTA

First step:
improve
representation!

O © Create/close [us]

Second step:
overheads in
appropriate
units!

Further Analysis shows
guest dis-&enables
IRQs 22 times!

Create/close [us] 1472

©2013 Gethat Heldeh MIETA

Yet Another One... Good or OQ
bad?

TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 us
12338 12873 028%
TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 us
 TDes16_Num_RadixBinary4 1.0088 1.0116 027% 27ps
TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 us
| TDesC16 CompareF7 1.0302 1.0444 027% 27ps
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 us

« Note: these are purely user-level operations!

. ' i ?
What's going on” Timer interrupt
virtualization

overhead!

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Lessons Learned (e
NICTA

- Ensure stable results

— repeat for good statistics

— investigate source of apparent randomness
- Have a model of what you expect

— investigate if behaviour is different

— unexplained effects are likely to indicate problems — don't ignore them!
- Tools are your friends

— performance counters

— simulators

— traces

— spreadsheets

Annotated list of benchmarking crimes: http://www.gernot-heiser.org/

©2013 Gernot Heiser, NICTA APSys'13 PhD WS

Thank Youl!

mailto:gernot@nicta.com.au

Twitter: @GernotHeiser

©2013 Gernot Heiser, NICTA

