
The Dos and Don’ts
of Benchmarking
Gernot Heiser
NICTA and UNSW

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 2

… or how not to lie with benchmarks

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 3

Benchmarking in Research

•  Generally one of two objectives:
–  Show new approach improves performance
–  Show otherwise attractive approach does not undermine performance

•  Requirement: objectivity/fairness
–  Selection of baseline
–  Inclusion of relevant alternatives
–  Fair evaluation of alternatives

•  Requirement: analysis/explanation of results
–  Model of system, incorporating relevant parameters
–  Hypothesis of behaviour
–  Results must support hypothesis

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 4

Lies, Damned Lies, Benchmarks

•  Micro- vs macro-benchmarks
•  Standard vs ad-hoc
•  Benchmark suites, use of subsets
•  Completeness of results
•  Significance of results
•  Baseline for comparison
•  Benchmarking ethics
•  What is good — analysing the results

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 5

Micro- vs Macro-Benchmarks

•  Macro-benchmarks
–  Use realistic workloads
–  Measure real-life system performance (hopefully)

•  Micro-benchmarks
–  Exercise particular operation, e.g. single system call
–  Good for analysing performance / narrowing down down performance

bottlenecks
•  critical operation is slower than expected
•  critical operation performed more frequently than expected
•  operation is unexpectedly critical (because it's too slow)

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 6

Micro- vs Macro-Benchmarks

Benchmarking Crime: Micro-benchmarks only
•  Pretend micro-benchmarks represent overall system performance

•  Real performance can generally not be assessed with micro-
benchmarks

•  Exceptions:
–  Focus is on improving particular operation known to be critical
–  There is an established base line

Note: My macro-benchmark is your micro-benchmark
•  Depends on the level on which you are operating
•  Eg: lmbench

–  … is a Linux micro-benchmark suite
–  … is a hypervsior macro-benchmark

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 7

Synthetic vs “Real-world” Benchmarks

•  Real-world benchmarks:
–  real code taken from real problems

•  Livermore loops, SPEC, EEMBC, …
–  execution traces taken from real problems
–  distributions taken from real use

•  file sizes, network packet arrivals and sizes
–  Caution: representative for one scenario doesn't mean for every scenario!

•  may not provide complete coverage of relevant data space
•  may be biased

•  Synthetic benchmarks
–  created to simulate certain scenarios
–  tend to use random data, or extreme data
–  may represent unrealistic workloads
–  may stress or omit pathological cases

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 8

Standard vs Ad-Hoc Benchmarks

Why use ad-hoc benchmarks?
•  There may not be a suitable standard benchmark

–  Example: lack of standardised multi-tasking workloads
•  Cannot run standard benchmarks

–  Limitations of experimental system

Why not use ad-hoc benchmarks?
•  Not comparable to other work (unless they use the same)
•  Poor reproducibility

Facit: Only use ad-hoc benchmarks if you have no other choice
•  Justify well what you’re doing

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 9

Benchmark Suites

•  Widely used (and abused!)
•  Collection of individual benchmarks, aiming to cover all of relevant

data space
•  Examples: SPEC CPU{92|95|2000|2006}

–  Originally aimed at evaluating processor performance
–  Heavily used by computer architects
–  Widely (ab)used for other purposes
–  Integer and floating-point suite
–  Some short, some long-running
–  Range of behaviours from memory-intensive to CPU-intensive

•  behaviour changes over time, as memory systems change
•  need to keep increasing working sets to ensure significant memory

loads

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 10

Obtaining an Overall Score for a BM Suite

•  How can we get a single figure of merit for the whole suite?
•  Example: comparing 3 systems on suite of 2 BMs

APSys'13 PhD WS

Benchmark System X System Y System Z
1 20 10 40
2 40 80 20
Total 60 90 60

Benchmark System X System Y System Z
1 20 10 40
2 40 80 20
Total 60 90 60
Mean 30 45 30

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 1.00 10 0.50 40 2.00
2 40 1.00 80 2.00 20 0.50
Mean 30 1.00 45 1.25 30 1.25

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00
2 40 0.50 80 1.00 20 0.25
Mean 30 1.25 45 1.00 30 2.13

Benchmark
System X System Y System Z
Abs Rel Abs Rel Abs Rel

1 20 2.00 10 1.00 40 4.00
2 40 0.50 80 1.00 20 0.25
Geom. mean 1.00 1.00 1.00

Arithmetic mean is meaningless for relative numbers

Normalise to
System X

Normalise to
System Y

Geometric
mean?

Does the
mean make

sense?

Invariant
under

normalisation!
Arithmetic mean is meaningless for relative numbers

Rule: arithmetic mean for raw numbers,
geometric mean for normalised! [Fleming & Wallace, ‘86]

©2013 Gernot Heiser, NICTA 11

Benchmark Suite Abuse

Benchmarking Crime: Select subset of suite
•  Introduces bias

–  Point of suite is to cover a range of behaviour
–  Be wary of “typical results”, “representative subset”

•  Sometimes unavoidable
–  some don't build on non-standard system or fail at run time
–  some may be too big for a particular system

•  eg, don't have file system and run from RAM disk...
•  Treat with extreme care!

–  can only draw limited conclusion from results
–  cannot compare with (complete) published results
–  need to provide convincing explanation why only subset

Other SPEC crimes include use for multiprocessor scalability
–  run multiple SPECs on different CPUs
–  what does this prove?

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 12

Partial Data

•  Frequently seen in I/O benchmarks:
–  Throughput is degraded by 10%

•  “Our super-reliable stack only adds 10% overhead”

–  Why is throughput degraded?
•  latency too high
•  CPU saturated?

–  Also, changes to drivers or I/O subsystem may affect scheduling
•  interrupt coalescence: do more with fewer interrupts

–  Throughput on its own is useless!

APSys'13 PhD WS

Almost certainly
not true!

©2013 Gernot Heiser, NICTA 13

Throughput Degradation

•  Scenario: Network driver or protocol stack
–  New driver reduces throughput by 10% — why?
–  Compare:

•  100 Mb/s, 100% CPU vs 90 Mb/s, 100% CPU
•  100 Mb/s, 20% CPU vs 90 Mb/s, 40% CPU

–  Correct figure of merit is processing cost per unit of data
•  Proportional to CPU load divided by throughput

–  Correct overhead calculation:
•  10 µs/kb vs 11 µs/kb: 10% overhead
•  2 µs/kb vs 4.4 µs/kb: 120% overhead

Benchmarking crime: Show throughput degradation only
•  … and pretend this represents total overhead

APSys'13 PhD WS

CPU
limited

Latency
limited

©2013 Gernot Heiser, NICTA 14

Significance of Measurements

All measurements are subject to random errors
•  Standard scientific approach: Many iterations, collect statistics
•  Rarely done in systems work — why?
•  Computer systems tend to be highly deterministic

–  Repeated measurements often give identical results
–  Main exception are experiments involving WANs

•  However, it is dangerous to rely on this without checking!
–  Sometimes “random” fluctuations indicate hidden parameters

Benchmarking crime: results with no indication of significance
Non-criminal approach:
•  Show at least standard deviation of your measurements
•  … or state explicitly it was below a certain value throughout
•  Admit results are insignificant unless well-separated std deviations

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 15

How to Measure and Compare Performance

Bare-minimum statistics:
•  At minimum report the mean (µ) and standard deviation (σ)

–  Don't believe any effect that is less than a standard deviation
•  10.2±1.5 is not significantly different from 11.5

–  Be highly suspicious if it is less than two standard deviations
•  10.2±0.8 may not be different from 11.5

•  Be very suspicious if reproducibility is poor (i.e. σ is not small)
Distrust standard deviations of small iteration counts
–  standard deviations are meaningless for small number of runs
–  … but ok if effect ≫ σ
–  The proper way to check significance of differences is Student's t-test!

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 16

How to Measure and Compare Performance

Obtaining meaningful execution times:
•  Make sure execution times are long enough

–  What is the granularity of your time measurements?
–  make sure the effect you're looking for is much bigger
–  many repetitions won't help if your effect is dominated by clock resolution
–  do many repetitions in a tight loop if necessary

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 17

Example: gzip from SPEC CPU2000

APSys'13 PhD WS

Observations?
•  First iteration is special

•  20 Hz clock
–  will not be able to

observe any effects
that account for less
than 0.1 sec

Lesson?
•  Need a mental model of the system

–  Here: repeated runs should give the same result
•  Find reason (hidden parameters) if results do not comply!

Cache
warmup

Clock
resolution

©2013 Gernot Heiser, NICTA 18

How to Measure and Compare Performance

Noisy data:
•  sometimes it isn't feasible to get a “clean” system

–  e.g. running apps on a “standard configuration”
–  this can lead to very noisy results, large standard deviations

Possible ways out:
•  ignoring lowest and highest result
•  taking the floor of results

–  makes only sense if you're looking for minimum
•  but beware of difference-taking!

Both of these are dangerous, use with great care!
•  Only if you know what you are doing

–  need to give a convincing explanation of why this is justified
•  Only if you explicitly state what you've done in your paper/report

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 19

Real-World Example

Benchmark:
•  300.twolf from SPEC CPU2000 suite

Platform:
•  Dell Latitude D600

–  Pentium M @ 1.8GHz
–  32KiB L1 cache, 8-way
–  1MiB L2 cache, 8-way
–  DDR memory @ effective 266MHz

•  Linux kernel version 2.6.24

Methodology:
•  Multiple identical runs for statistics...

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 20

twolf on Linux: What's going on?

20% performance
difference
between

“identical” runs!

Performance
counters are your

friends!

Subtract 221
cycles (123ns)
for each cache

miss

©2013 Gernot Heiser, NICTA 21

twolf on Linux: Lessons?

•  Pointer to problem was standard deviation
–  σ for “twolf” was much higher than normal for SPEC programs

•  Standard deviation did not conform to mental model
–  Shows the value of verifying that model holds
–  Correcting model improved results dramatically

•  Shows danger of assuming reproducibility without checking!

Conclusion: Always collect and analyse standard deviations!

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 22

How to Measure and Compare Performance

Avoid incorrect conclusions from pathological cases
•  Typical cases:

–  sequential access optimised by underlying hardware/disk controller...
–  potentially massive differences between sequentially up/down

•  pre-fetching by processor, disk cache
–  random access may be an unrealistic scenario that destroys performance

•  for file systems
–  powers of two may be particularly good or particularly bad for strides

•  often good for cache utilisation
–  minimise number of cache lines used

•  often bad for cache utilisation
–  maximise cache conflicts

–  similarly just-off powers (2n-1, 2n+1)
•  What is “pathological” depends a lot on what you're measuring

–  e.g. caching in underlying hardware

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 23

How to Measure and Compare Performance

Use a model
•  You need a (mental or explicit) model of the behaviour of your system

–  benchmarking should aim to support or disprove that model
–  need to think about this in selecting data, evaluating results
–  eg: I/O performance dependent on FS layout, caching in controller...
–  cache sizes (HW & SW caches)
–  buffer sizes vs cache size

•  Should tell you the size of what to expect
–  you should understand that a 2ns cache miss penalty can't be right

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 24

Example: Memory Copy

APSys'13 PhD WS

L1 cache (32KiB)

Pipelining

L2 cache (1MiB)

©2013 Gernot Heiser, NICTA 25

How to Measure and Compare Performance

Understand your results!
•  Results you don't understand will almost certainly hide a problem

–  Never publish results you don't understand
•  chances are the reviewers understand them, and will reject the paper
•  maybe worse: someone at the conference does it

–  this will make you look like an idiot

APSys'13 PhD WS

Of course, if this
happens you are an

idiot!

©2013 Gernot Heiser, NICTA 26

Relative vs Absolute Data

From a real paper (IEEE CCNC’09):
•  No data other than this figure
•  No figure caption
•  Only explanation in text:

–  “The L4 overhead compared to VLX ranges from
a 2x to 20x factor depending on the Linux
system call benchmark”

•  No definition of “overhead factor”
•  No native Linux data

Benchmarking crime: Relative numbers only
•  Makes it impossible to check whether results make sense
•  How hard did they try to get the competitor system to perform?

–  Eg, did they run it with default build parameters (debugging enabled)?

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 27

Benchmarking Ethics

•  Do compare with published competitor data, but…
–  Ensure comparable setup

•  Same hardware (or convincing argument why it doesn’t matter)
–  you may be looking at an aspect the competitor didn't focus on

•  eg: they designed for large NUMA, you optimise for embedded
•  Be ultra-careful when benchmarking competitor’s system yourself

–  Are you sure you're running the competitor system optimally?
•  you could have the system mis-configured (eg debugging enabled)
•  Do your results match their (published or else) data?

–  Make sure you understand exactly what is going on!
•  Eg use profiling/tracing to understand source of difference
•  Explain it!

Benchmarking crime: Unethical benchmarking of competitor
•  Lack of care is unethical too!

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 28

What Is “Good”?

•  Easy if there are established and published benchmarks
–  Eg your improved algorithm beats best published Linux data by x%
–  But are you sure that it doesn't lead to worse performance elsewhere?

•  important to run complete benchmark suites
•  think of everything that could be adversely effected, and measure!

•  Tricky if no published standard
–  Can run competitor/incumbent

•  eg run lmbench, kernel compile etc on your modified Linux and
standard Linux

•  but be very careful to avoid running the competitor sub-optimally!
–  Establish performance limits

•  ie compare against optimal scenario
•  micro-benchmarks or profiling can be highly valuable here!

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 29

Real-World Example: Virtualization Overhead

•  Symbian null-syscall microbenchmark:
–  native: 0.24µs, virtualized (on OKL4): 0.79µs
–  230% overhead

•  ARM11 processor runs at 368 MHz:
–  Native: 0.24µs = 93 cy
–  Virtualized: 0.79µs = 292 cy
–  Overhead: 0.55µs = 199 cy
–  Cache-miss penalty ≈ 20 cy

•  Model:
–  native: 2 mode switches, 0 context switches, 1 x save+restore state
–  virtualized: 4 mode switches, 2 context switches, 3 x save+restore state

APSys'13 PhD WS

Good or
bad?

Expected
overhead?

©2013 Gernot Heiser, NICTA 30

Performance Counters are Your Friends!

Counter Native Virtualized Difference

Branch miss-pred 1 1 0

D-cache miss 0 0 0

I-cache miss 0 1 1

D-µTLB miss 0 0 0

I-µTLB miss 0 0 0

Main-TLB miss 0 0 0

Instructions 30 125 95
D-stall cycles 0 27 27

I-stall cycles 0 45 45

Total Cycles 93 292 199

Good or
bad?

©2013 Gernot Heiser, NICTA 31

More of the Same...

APSys'13 PhD WS

Benchmark Native Virtualized

Context switch [1/s] 615046 444504

Create/close [µs] 11 15

Suspend [10ns] 81 154

Benchmark Native Virtualized Difference Overhead
Context switch [µs] 1.63 2.25 0.62 39%
Create/close [µs] 11 15 4 36%
Suspend [µs] 0.81 1.54 0.73 90%

First step:
improve

representation!

Benchmark Native Virt. Diff [µs] Diff [cy] # sysc Cy/sysc
Context switch [µs] 1.63 2.25 0.62 230 1 230
Create/close [µs] 11 15 4 1472 2 736
Suspend [µs] 0.81 1.54 0.73 269 1 269

Second step:
overheads in
appropriate

units!

Further Analysis shows
guest dis-&enables

IRQs 22 times!

©2013 Gernot Heiser, NICTA 32

Yet Another One...

•  Note: these are purely user-level operations!
•  What's going on?

APSys'13 PhD WS

Benchmark Native [µs] Virt. [µs] Overhead

TDes16_Num0 1.2900 1.2936 0.28%

TDes16_RadixHex1 0.7110 0.7129 0.27%

TDes16_RadixDecimal2 1.2338 1.2373 0.28%

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28%

TDes16_Num_RadixBinary4 1.0088 1.0116 0.27%

TDesC16_Compare5 0.9621 0.9647 0.27%

TDesC16_CompareF7 1.9392 1.9444 0.27%
TdesC16_MatchF9 1.1060 1.1090 0.27%

Benchmark Native [µs] Virt. [µs] Overhead Per tick

TDes16_Num0 1.2900 1.2936 0.28% 2.8 µs

TDes16_RadixHex1 0.7110 0.7129 0.27% 2.7 µs

TDes16_RadixDecimal2 1.2338 1.2373 0.28% 2.8 µs

TDes16_Num_RadixOctal3 0.6306 0.6324 0.28% 2.8 µs

TDes16_Num_RadixBinary4 1.0088 1.0116 0.27% 2.7 µs

TDesC16_Compare5 0.9621 0.9647 0.27% 2.7 µs

TDesC16_CompareF7 1.9392 1.9444 0.27% 2.7 µs
TdesC16_MatchF9 1.1060 1.1090 0.27% 2.7 µs

Timer interrupt
virtualization
overhead!

Good or
bad?

©2013 Gernot Heiser, NICTA 33

Lessons Learned

•  Ensure stable results
–  repeat for good statistics
–  investigate source of apparent randomness

•  Have a model of what you expect
–  investigate if behaviour is different
–  unexplained effects are likely to indicate problems — don't ignore them!

•  Tools are your friends
–  performance counters
–  simulators
–  traces
–  spreadsheets

Annotated list of benchmarking crimes: http://www.gernot-heiser.org/

APSys'13 PhD WS

©2013 Gernot Heiser, NICTA 34 34

Thank You!
mailto:gernot@nicta.com.au

Twitter: @GernotHeiser

