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The Motivation for this Talk

◮ There are many small design decisions with huge
impact on security.

◮ Things which make sense from efficiency point of view,
but completely destroy security.

◮ Things which are counter-intuitive (“but why would it
hurt security?”)

◮ Things that used to work one way, but the world has
changed. . .

◮ Common (and not so common) mistakes.
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Welcome to the World of GSM/3G

◮ The most widely deployed mobile
phone technology.

◮ More than 3G users around 212
countries.

◮ Has inherent support for roaming.

◮ GSM uses 4 bands:
900MHz/1800MHz in most of the
world, and 850MHz/1900MHz in
North America and Chile.

◮ 3G uses the 1700/2100 MHz band.
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Security of GSM/3G

◮ Mobile phones are susceptible to many threats:

1 Call theft
2 Cell phone duplication
3 Eavesdropping
4 . . .

◮ To deal with them, GSM/3G incorporate several security
mechanisms, which are based on a (table of) preshared
secret embedded into the SIM card.
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Security of GSM/3G (cont.)

◮ To handle the authentication of the mobile phone, a pair
of protocols are executed: A3/A8.

◮ The two protocols perform authentication and key
exchange, based on the preshared secret.

◮ At the end of A3/A8 execution the mobile phone and the
operator have a session key of 64 bits (or 128 bits in 3G).

◮ A3/A8 is not specified in the standards, but many
operators decided to deploy COMP128, which proved a
bad decision as COMP128 is extremely weak [GW98].

◮ Today, most operators run secure algorithms, such as
COMP128v2.
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A3/A8 — General Structure

K

Identification (IMSI)

IMSI:Kchal

f1(chal ,K )

The session key is set as f2(chal ,K ).
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Session keys and A5/1 and A5/2

◮ The 64-bit session key is used to key A5/1 (or A5/2).

◮ Each phone needs to support both ciphers (and today,
also A5/3 and A5/4).

◮ The cipher to be used is selected by the network (export
control/support at basestation).

What happens when the cipher is changed?
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Changing a Cipher — The Easy Solution

◮ The session key is secret.

◮ Deriving a new key requires executing A3/A8 again.

◮ This actually should never happen. . .

◮ Easy solution: use same key for A5/1, A5/2, etc. (not
A5/4).

What could possibly go wrong?
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Quick and Dirty Introduction to A5/1

◮ 64-bit key stream cipher.

◮ Uses 3 LFSRs of lengths 19,22,23.

◮ LFSRs are loaded with the key and a frame number.

◮ Then the are irregularly clocked.

◮ Best attack (before disclosure): 248 time (for a little
data).

◮ Best attack (after disclosure): 240 time (more data).

◮ Conclusion: not the best option, but decent enough.
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Quick and Dirty Introduction to A5/2

◮ 64-bit key stream cipher.

◮ Uses 4 LFSRs of lengths 17,19,22,23.

◮ LFSRs are loaded with the key and a frame number.

◮ Then the 17-bit register controls the clocking.

◮ Given the contents of the 17-bit register, breaking the
system is trivial (everything becomes linear).

◮ Original attack: 217 trials (each taking a bit). About a
second of computation.

◮ Best attack: Precompute 217 inversion matrices. Find key
with a simple matrix multiplication.

◮ Conclusion: weak. very weak.

Can you see the problem?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 13/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack GSM

◮ Start your own basestation.

◮ Stand close to the cell phone you are attacking.

◮ Ask the cell to use your basestation (over an unencrypted
control channel).

◮ Ask the cell to talk A5/2 with you.

◮ Break A5/2.

◮ Remove your basestation.

◮ Let target switch back to A5/1 or A5/3.

◮ Make profit.

You can allegedly buy devices that do all this work for you.
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Conclusions (and Mitigation)

◮ Each context should has its own keys.

◮ In the theory of cryptography this is called “domain
separation”.

◮ Main reason: another layer of defense (breaking part of
the system does not violate the full security).

◮ Additional reason: helps in the debug (though you need
to debug the different contexts).

◮ In the case of GSM, could have been session key is output
of f2(chal ,K , alg) (where alg is A5/1 or A5/2 or A5/3).
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Unauthenticated Control Channel

Recall the active attack on GSM:
◮ Start your own basestation.
◮ Start your own basestation.
◮ Stand close to the cell phone you are attacking.
◮ Ask the cell to use your basestation (over an unencrypted

control channel).
◮ Ask the cell to use your basestation (over an

unencrypted control channel).
◮ Ask the cell to talk A5/2 with you.
◮ Ask the cell to talk A5/2 with you.
◮ Break A5/2.
◮ Remove your basestation.
◮ Let target switch back to A5/1 or A5/3.
◮ Make profit.
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Unauthenticated Control Channel (cont.)

◮ Control channel can also tell the cell to switch off
encryption completely (A5/0).

◮ But then, the adversary just hears what he is forwarding.

◮ Protection of control data is important (not just due to
this attack).

◮ Allows meta data to leak (control channel lets you start
phone calls).

◮ It should be hidden (protecting privacy of users) and
authenticated (authenticating both ways).

◮ Helps in preventing rouge basestations.

◮ Similar attacks are also applicable to TOR (the onion
routing network).
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Conclusions (and Mitigation)

◮ Encrypt & authenticate all channels.

◮ Can be done using encryption (preferably under a
different key than the session key).

◮ Authenticate identity basestations (i.e., two-way
authentication).

◮ Can be done in the first message (basestation sends
f3(chal ,K )).

◮ Main reasons:
◮ Security (another layer of defense),
◮ Privacy,
◮ Prevents active attacks.
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How to Attack A5/2 Efficiently

◮ As mentioned earlier A5/2 is a stream cipher.

◮ Once a 17-bit register is known, the entire algorithm
becomes linear.

◮ A simple straightforward attack — guess the 17 bits, and
break a linear scheme.

◮ A more advanced attack — precompute the matrices that
“break” the linear scheme.

◮ But this requires multiplying a vector with a matrix 217

times.

◮ And actually, requires knowing some conversation bits.

Is there a better way?
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How to Attack A5/2 Efficiently (cont.)

◮ Luckily, in GSM the following procedure is used in the
encryption:

◮ Take the message M

◮ Apply error correction code (very expanding) ECC (M)
◮ Encrypt with A5/2 ECC (M) ⊕ KS

◮ Recall that KS is actually one of 217 linear functions
Li(X ) (for a 64-bit internal state X ).

◮ In other words, the ciphertext is ECC (M)⊕ Li(X ).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 20/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack A5/2 Efficiently (cont.)

◮ Both ECC and Li are expanding linear operations.

◮ In other words, it is easy to compute a kernel of “a joint”
matrix ECC ⊕ Li , which operates on M and X .

◮ Attack:
◮ For all ECC ⊕ Li , compute the kernel of the matrix.
◮ Given ciphertext-only, see in which kernel it is found.
◮ It will be in one kernel. . .

◮ Once Li is found, game is over.
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Conclusions (and Mitigation)

◮ Thou shalt not do anything besides the following order:
◮ Compression
◮ Encryption
◮ Authentication (MAC)
◮ Error correction

◮ Use authenticated encryption when possible.

◮ For public-key scenarios, consider signcryption (or sign
and then encrypt).
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Randomness

Randomness means lack of pattern or predictability
in events.

[Wikipedia]

◮ Randomness offers many great difficulties for us on an
every day base.

◮ Luckily for us, it has also great security uses.
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The Bright Side of Randomness

◮ If no one cannot predict the future, then so does the
adversary.

◮ Which means that when you select cryptographic keys,
you should probably pick random keys (to reduce chance
of being guessed).

◮ Just like when selecting passwords — the smaller the
entropy of the password, the easier it is to guess it.
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How to Generate Entropy (in Hardware)

Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of
sin.

[John von Neumann, 1951]
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How to Generate Entropy (in Hardware)

◮ Random bit (number) generation in hardware relies on
various physical traits:

◮ Nuclear decay,
◮ Real dices,
◮ Complex (chaotic) systems (e.g., lava lamps),
◮ Sampling a circuit with an odd number of not gates,
◮ . . .

◮ Some of these methods do produce equally distributed
stream of bitsbut they are correlated.

◮ Usually involves a (cryptographic) post-processing to
handle correlation.

◮ Check FIPS 140-2 concerning evaluation of the quality of
the produced randomness.
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How to Generate Entropy (in Software)

◮ You cannot.

◮ Software (without bugs) is completely predictable.

◮ The system may have some physical sources of
randomness (entropy):

◮ Hard-disk access times
◮ Network activity
◮ User interface (keyboard/mouse/. . . )
◮ Process id
◮ Leftovers in memory
◮ New on Intel platforms: RDRAND
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How to Use Entropy (Software)

◮ /dev/random (TRNG) vs. /dev/urandom (seed that goes
into a PRNG).

◮ When generating keys — ONLY /dev/random.

◮ And post-process.

◮ And try to combine with other sources of entropy.

◮ And try to use a hardware RNG.
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The Debian Bug — OpenSSL

◮ OpenSSL is the most common open source cryptographic
suite (implements SSL/TLS).

◮ It handles its own key generation, on top of the
/dev/random offered by the system.

◮ In September 2006, a Debian developer (kroeckx)
commented out the following line:

MD Update(&m,buf,j);

◮ (Actually, he commented this line twice).

◮ The reason: Valgrind complained about using an
uninitialized data structure — buf.
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The Debian Bug — OpenSSL (cont.)

◮ One problem — buf contained some “random” leftovers.

◮ Without it, the only “randomness” the PRNG of
OpenSSL was seeded with was the process id.

◮ One of 215 = 32768 possible values. . .
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Impact

◮ If there are only 32,768 seeds, there are at most 32,768
different random sequences that may be produced.

◮ Even in the key generation phase of OpenSSL (and of
OpenSSH).

◮ Meaning: whoever produced a public key between 2006
and the discovery (2008), used low-entropy keys.

◮ Which can be factored, reversed (signatures), etc.

◮ Lots and lots of affected systems. Including small network
devices.
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Conclusions (and Mitigation)

◮ If it ain’t no broken, don’t fix it, eh?

◮ Randomness: diversify your sources.

◮ Randomness: more sources cannot hurt you (unless there
are hidden correlations).

◮ Run randomness tests.

◮ Test for randomness — in the stream, and across streams
(would have identified WEP attacks as well).

◮ Remember: You can only FAIL at randomness tests.
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Selecting Prime Numbers

1 Pick a random seed.

2 Put into a PRNG.

3 Produce a stream of bits.

4 Take a chunk of bits, and test whether they compose a
random number.

5 If so, output number. If more random primes are needed,
go to Step 3.

6 If the number is not prime, go to Step 3.
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What can Possibly Go Wrong?

1 Pick a random seed.

2 Put into a PRNG.

3 Produce a stream of bits.

4 Take a chunk of bits, and test whether they compose a
random number.

5 If so, output number. If more random primes are needed,
go to Step 3.

6 If the number is not prime, go to Step 3.
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In Theory there is no Difference between Theory

and Practice . . .

◮ [H+12] gathered 12.8M TLS public keys and 10.2M SSH
public keys.

◮ Using some quick algorithms (DJB’s algorithm) they
found pairs of keys that share prime numbers.

◮ Such pairs of keys allow using gcd(·) to find the prime
numbers themselves (i.e., factorizing the RSA key)

◮ Which is a bad thing. . .
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Summary of [H+12] Results

TLS SSH
Total # of Keys 12,828,613 10,216,363
Repeated Keys (RKs) 7,770,232 (60.5%) 6,642,222 (65.0%)
Vulnerable RK 714,243 (5.57%) 981,166 (9.6%)
Default Keys 670,391 (5.23%)
Low-entropy RK 43,852 (0.34%)
Factored RSA keys 64,081 (0.5%) 2,459 (0.03%)
Compromised DSA keys 105,728 (1.03%)
Debian weak keys (!) 4,147 (0.03%) 53,141 (0.52%)
512-bit RSA keys 123,038 (0.96%) 8,459 (0.08%)
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What Went Wrong? (partial list)

◮ Sites using default keys. with certificates(!)

◮ Citrix servers using shared keys (again some with
certificates).

◮ Most repeated keys — ok (used in hosting services).
Some — low entropy of the PRNG.

◮ Many routers, server management cards, VPN devices,
VoIP products, and network storage devices suffered from
these issues.

But Why?
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Recall the Entropy Sources:

◮ Hard-disk access times — SSDs do not have as diverse
access times.

◮ Network activity — Network devices are initialized in
quiet networks.

◮ User interface (keyboard/mouse/. . . ) — most devices no
longer have a lot of user interface.

◮ Process id — system starts assigning pids at 0.
◮ Leftovers in memory — No leftovers — devices have a

“zeroed” memory.
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Conclusions (and Mitigation)

◮ OS developers:
◮ Expose good randomness.
◮ Explicitly define randomness assumptions.

◮ Library developers:
◮ Set default at most secure option (OpenSSL used

/dev/urandom).
◮ Do not generate keys immediately one after the other

(let some entropy “brew”).
◮ Pass OS information onwards.

◮ Developers:
◮ Generate keys when needed (not in install/first boot).
◮ Collect entropy.
◮ NO DEFAULT KEYS!
◮ Consider seeding entropy a-priori at production.
◮ Obey OS restrictions.
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The Story of Flame

◮ Along with Stuxnet considered to be one of the worms
used to hack Iranian nuclear effort.

◮ A very complicated and advanced malware.

◮ Probably installed by an infected USB device.

Wait!
How come it installed when software signatures are

used?
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Signing Code

◮ Generally speaking, today’s code is digitally signed by
authors.

◮ A digital signature sig = S(M), is a string of bits that
authenticate the source of a message M (including that it
was not tampered with).

◮ To verify a signature, the recipient obtains the signer’s
public key pk and checks whether (sig ,M) is valid
according to pk.

◮ But how does the recipient know pk?
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Quick and Dirty Introduction to Certificates

◮ Assume we have a trusted third party.
◮ OK, not 100% trusted with everything. Just that it is

trusted enough to link identity with a public key.
◮ Then, this entity can sign “attestations” of the form

(id , pk) saying user id has public key pk.
◮ Signature to be done using the trusted entity public key

pkCA.

How do we know pkCA?
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Quick and Dirty Introduction to Certificates (cont.)

◮ The idea: you know pkCA in advance.

◮ In each browser there are about 100 pre-approved CAs
(certification authorities), with their public key.

◮ What to do with a new CA?

◮ CAs are allowed to issue a “special” certificate of the
form: (newCA, id(newCA), pk(newCA)).

◮ So if you know one of the CAs that signed a certificate
for the new CA, you are set to go.

◮ Of course, you may not know any CA signing for the new
CA. But maybe one of them has a certificate issued by a
CA you do know. . .

◮ And this is called certificate chain.
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What Failed in the Case of Flame?

◮ Flame was signed by Microsoft.

◮ But this is due to some cryptanalytic attack based on
MD5 weaknesses.

◮ Roughly speaking, you never sign a message, but its
digest.

◮ MD5 was well known since 2004 to be weak.

◮ Was still used in 2008.

◮ And the phasing out is still ongoing.

◮ But this is not what I am going to discuss.
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What Failed in the Case of Flame? (cont.)

◮ The original certificate was issued to an (unknown) entity
for use in Outlook systems.

◮ Due to mishandling of permissions on certificates, such
certificates whose root was Microsoft, were allowed to
sign code.

◮ Due to mishandling of permissions on certificates, such
certificates whose root was Microsoft, were allowed to
sign code.

◮ And the code was trusted because it was “approved” by
Microsoft.

◮ In other words — you could install without user’s
interaction/approval.
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Conclusions (and Mitigation)

◮ Mitigate weak crypto.

◮ Do not allow installation without user’s interaction
(unless signed directly or with a special key).

◮ Trust is not transitive.

◮ Domain separation. Good for certificates (as well).
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How to Validate a Certificate

◮ As mentioned before, each user has a list of trusted CAs:
◮ Verisign,
◮ Comodo,
◮ Entrust,
◮ . . .
◮ CNNIC

◮ When validating a certificate, we check whether the
signing key is known (and trusted).

◮ If not, we recursively validate the signing key.
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CNNIC — The Chinese are After You

◮ In 2010 the Chinese CNNIC was added to the list of
trusted CAs of Firefox.

◮ In other words, any Firefox trusts certificates issued by
CNNIC.

◮ Including for gmail. Or bankofamerica.com.

◮ In other words, a CA can issue certificates “incorrectly”.

◮ Partial solution: Check that the certificate was issued by
someone related.
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Diginator — The Iranian are After You

◮ In 2011, the Dutch CA, diginator was taken over by the
Dutch government.

◮ Apparently, their systems were hacked.

◮ And their private key was used to sign rouge certificates
for several domains (mostly google related).

◮ These certificates were used to spy on Iranian activists.

◮ After the forensics, diginator was shut down.
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The Real Issue

◮ Obviously, joining the CA roots or hacking into a CA
invalidates the entire security model.

◮ However, there are better attack vectors:
◮ Users accept all certificates (self-signed, expired, etc.)
◮ Users can be easily tricked to not use secure connections.
◮ Users . . .

◮ But also developers are to blame. . .
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The Real Issue (cont.)

◮ Not all applications check certificates.

◮ In [F+13] it was found out that:
◮ Of about 13,500 applications in google play, only 17

implemented certificate validation correctly.
◮ Common errors:

◮ Accept all certificates (89%)
◮ Only check expiration (7.5%)
◮ Break SSL
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The Reason

◮ Apparently, developers use self-signed certificate for tests.

◮ These certificates cause issues when using default
implementations.

◮ So they google the error code. The first answer is “Set
handle-validation-fails to null”

◮ Obviously, this is a good way to solve debugging issues.

◮ And ruin security if you do not handle validation errors
after development ends.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 54/ 56



Motivation GSM Entropy PKI Flame Certificates

Conclusions (and Mitigation)

◮ Trust is not transitive.

◮ Stress-test using real certificates.

◮ Implement certificate pinning.

◮ Ask google, think on your own (TM).

◮ Try to rely on libraries (and good ones).

◮ Or develop one. . .
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Questions?

Thank you very much for your attention!
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