
Motivation GSM Entropy PKI

The Book of

Bad Crypto Decisions

(part 1 of 1,000,000)

Orr Dunkelman

Computer Science Department
University of Haifa

21th July, 2014

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 1/ 56



Motivation GSM Entropy PKI

Outline

1 The Motivation for this Talk

2 The (In)Security of GSM
Quick Introduction to how GSM Works
And One Key to Rule Them All
How (Not) to Authenticate Control
Compress-Encrypt-Authenticate-Error Correct

3 On the Importance of Entropy in Security
Why Entropy is Needed
How to Generate Entropy
The Debian Bug
How (Not) to Select Prime Numbers

4 Whose Key is it Anyway?
How (Not) to Build a PKI
The (Not) so Subtle Way to Validate Certificates

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 2/ 56



Motivation GSM Entropy PKI

The Motivation for this Talk

◮ There are many small design decisions with huge
impact on security.

◮ Things which make sense from efficiency point of view,
but completely destroy security.

◮ Things which are counter-intuitive (“but why would it
hurt security?”)

◮ Things that used to work one way, but the world has
changed. . .

◮ Common (and not so common) mistakes.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 4/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Welcome to the World of GSM/3G

◮ The most widely deployed mobile
phone technology.

◮ More than 3G users around 212
countries.

◮ Has inherent support for roaming.

◮ GSM uses 4 bands:
900MHz/1800MHz in most of the
world, and 850MHz/1900MHz in
North America and Chile.

◮ 3G uses the 1700/2100 MHz band.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 6/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Security of GSM/3G

◮ Mobile phones are susceptible to many threats:

1 Call theft
2 Cell phone duplication
3 Eavesdropping
4 . . .

◮ To deal with them, GSM/3G incorporate several security
mechanisms, which are based on a (table of) preshared
secret embedded into the SIM card.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 7/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Security of GSM/3G (cont.)

◮ To handle the authentication of the mobile phone, a pair
of protocols are executed: A3/A8.

◮ The two protocols perform authentication and key
exchange, based on the preshared secret.

◮ At the end of A3/A8 execution the mobile phone and the
operator have a session key of 64 bits (or 128 bits in 3G).

◮ A3/A8 is not specified in the standards, but many
operators decided to deploy COMP128, which proved a
bad decision as COMP128 is extremely weak [GW98].

◮ Today, most operators run secure algorithms, such as
COMP128v2.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 8/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

A3/A8 — General Structure

K

Identification (IMSI)

IMSI:Kchal

f1(chal ,K )

The session key is set as f2(chal ,K ).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 9/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Session keys and A5/1 and A5/2

◮ The 64-bit session key is used to key A5/1 (or A5/2).

◮ Each phone needs to support both ciphers (and today,
also A5/3 and A5/4).

◮ The cipher to be used is selected by the network (export
control/support at basestation).

What happens when the cipher is changed?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 10/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Changing a Cipher — The Easy Solution

◮ The session key is secret.

◮ Deriving a new key requires executing A3/A8 again.

◮ This actually should never happen. . .

◮ Easy solution: use same key for A5/1, A5/2, etc. (not
A5/4).

What could possibly go wrong?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 11/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Quick and Dirty Introduction to A5/1

◮ 64-bit key stream cipher.

◮ Uses 3 LFSRs of lengths 19,22,23.

◮ LFSRs are loaded with the key and a frame number.

◮ Then the are irregularly clocked.

◮ Best attack (before disclosure): 248 time (for a little
data).

◮ Best attack (after disclosure): 240 time (more data).

◮ Conclusion: not the best option, but decent enough.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 12/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Quick and Dirty Introduction to A5/2

◮ 64-bit key stream cipher.

◮ Uses 4 LFSRs of lengths 17,19,22,23.

◮ LFSRs are loaded with the key and a frame number.

◮ Then the 17-bit register controls the clocking.

◮ Given the contents of the 17-bit register, breaking the
system is trivial (everything becomes linear).

◮ Original attack: 217 trials (each taking a bit). About a
second of computation.

◮ Best attack: Precompute 217 inversion matrices. Find key
with a simple matrix multiplication.

◮ Conclusion: weak. very weak.

Can you see the problem?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 13/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack GSM

◮ Start your own basestation.

◮ Stand close to the cell phone you are attacking.

◮ Ask the cell to use your basestation (over an unencrypted
control channel).

◮ Ask the cell to talk A5/2 with you.

◮ Break A5/2.

◮ Remove your basestation.

◮ Let target switch back to A5/1 or A5/3.

◮ Make profit.

You can allegedly buy devices that do all this work for you.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 14/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Conclusions (and Mitigation)

◮ Each context should has its own keys.

◮ In the theory of cryptography this is called “domain
separation”.

◮ Main reason: another layer of defense (breaking part of
the system does not violate the full security).

◮ Additional reason: helps in the debug (though you need
to debug the different contexts).

◮ In the case of GSM, could have been session key is output
of f2(chal ,K , alg) (where alg is A5/1 or A5/2 or A5/3).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 15/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Unauthenticated Control Channel

Recall the active attack on GSM:
◮ Start your own basestation.
◮ Start your own basestation.
◮ Stand close to the cell phone you are attacking.
◮ Ask the cell to use your basestation (over an unencrypted

control channel).
◮ Ask the cell to use your basestation (over an

unencrypted control channel).
◮ Ask the cell to talk A5/2 with you.
◮ Ask the cell to talk A5/2 with you.
◮ Break A5/2.
◮ Remove your basestation.
◮ Let target switch back to A5/1 or A5/3.
◮ Make profit.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 16/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Unauthenticated Control Channel (cont.)

◮ Control channel can also tell the cell to switch off
encryption completely (A5/0).

◮ But then, the adversary just hears what he is forwarding.

◮ Protection of control data is important (not just due to
this attack).

◮ Allows meta data to leak (control channel lets you start
phone calls).

◮ It should be hidden (protecting privacy of users) and
authenticated (authenticating both ways).

◮ Helps in preventing rouge basestations.

◮ Similar attacks are also applicable to TOR (the onion
routing network).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 17/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Conclusions (and Mitigation)

◮ Encrypt & authenticate all channels.

◮ Can be done using encryption (preferably under a
different key than the session key).

◮ Authenticate identity basestations (i.e., two-way
authentication).

◮ Can be done in the first message (basestation sends
f3(chal ,K )).

◮ Main reasons:
◮ Security (another layer of defense),
◮ Privacy,
◮ Prevents active attacks.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 18/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack A5/2 Efficiently

◮ As mentioned earlier A5/2 is a stream cipher.

◮ Once a 17-bit register is known, the entire algorithm
becomes linear.

◮ A simple straightforward attack — guess the 17 bits, and
break a linear scheme.

◮ A more advanced attack — precompute the matrices that
“break” the linear scheme.

◮ But this requires multiplying a vector with a matrix 217

times.

◮ And actually, requires knowing some conversation bits.

Is there a better way?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 19/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack A5/2 Efficiently (cont.)

◮ Luckily, in GSM the following procedure is used in the
encryption:

◮ Take the message M

◮ Apply error correction code (very expanding) ECC (M)
◮ Encrypt with A5/2 ECC (M) ⊕ KS

◮ Recall that KS is actually one of 217 linear functions
Li(X ) (for a 64-bit internal state X ).

◮ In other words, the ciphertext is ECC (M)⊕ Li(X ).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 20/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

How to Attack A5/2 Efficiently (cont.)

◮ Both ECC and Li are expanding linear operations.

◮ In other words, it is easy to compute a kernel of “a joint”
matrix ECC ⊕ Li , which operates on M and X .

◮ Attack:
◮ For all ECC ⊕ Li , compute the kernel of the matrix.
◮ Given ciphertext-only, see in which kernel it is found.
◮ It will be in one kernel. . .

◮ Once Li is found, game is over.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 21/ 56



Motivation GSM Entropy PKI Intro Key C&C Order

Conclusions (and Mitigation)

◮ Thou shalt not do anything besides the following order:
◮ Compression
◮ Encryption
◮ Authentication (MAC)
◮ Error correction

◮ Use authenticated encryption when possible.

◮ For public-key scenarios, consider signcryption (or sign
and then encrypt).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 22/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Randomness

Randomness means lack of pattern or predictability
in events.

[Wikipedia]

◮ Randomness offers many great difficulties for us on an
every day base.

◮ Luckily for us, it has also great security uses.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 24/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

The Bright Side of Randomness

◮ If no one cannot predict the future, then so does the
adversary.

◮ Which means that when you select cryptographic keys,
you should probably pick random keys (to reduce chance
of being guessed).

◮ Just like when selecting passwords — the smaller the
entropy of the password, the easier it is to guess it.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 25/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

How to Generate Entropy (in Hardware)

Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of
sin.

[John von Neumann, 1951]

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 26/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

How to Generate Entropy (in Hardware)

◮ Random bit (number) generation in hardware relies on
various physical traits:

◮ Nuclear decay,
◮ Real dices,
◮ Complex (chaotic) systems (e.g., lava lamps),
◮ Sampling a circuit with an odd number of not gates,
◮ . . .

◮ Some of these methods do produce equally distributed
stream of bitsbut they are correlated.

◮ Usually involves a (cryptographic) post-processing to
handle correlation.

◮ Check FIPS 140-2 concerning evaluation of the quality of
the produced randomness.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 27/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

How to Generate Entropy (in Software)

◮ You cannot.

◮ Software (without bugs) is completely predictable.

◮ The system may have some physical sources of
randomness (entropy):

◮ Hard-disk access times
◮ Network activity
◮ User interface (keyboard/mouse/. . . )
◮ Process id
◮ Leftovers in memory
◮ New on Intel platforms: RDRAND

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 28/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

How to Use Entropy (Software)

◮ /dev/random (TRNG) vs. /dev/urandom (seed that goes
into a PRNG).

◮ When generating keys — ONLY /dev/random.

◮ And post-process.

◮ And try to combine with other sources of entropy.

◮ And try to use a hardware RNG.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 29/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

The Debian Bug — OpenSSL

◮ OpenSSL is the most common open source cryptographic
suite (implements SSL/TLS).

◮ It handles its own key generation, on top of the
/dev/random offered by the system.

◮ In September 2006, a Debian developer (kroeckx)
commented out the following line:

MD Update(&m,buf,j);

◮ (Actually, he commented this line twice).

◮ The reason: Valgrind complained about using an
uninitialized data structure — buf.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 30/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

The Debian Bug — OpenSSL (cont.)

◮ One problem — buf contained some “random” leftovers.

◮ Without it, the only “randomness” the PRNG of
OpenSSL was seeded with was the process id.

◮ One of 215 = 32768 possible values. . .

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 31/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Impact

◮ If there are only 32,768 seeds, there are at most 32,768
different random sequences that may be produced.

◮ Even in the key generation phase of OpenSSL (and of
OpenSSH).

◮ Meaning: whoever produced a public key between 2006
and the discovery (2008), used low-entropy keys.

◮ Which can be factored, reversed (signatures), etc.

◮ Lots and lots of affected systems. Including small network
devices.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 32/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Conclusions (and Mitigation)

◮ If it ain’t no broken, don’t fix it, eh?

◮ Randomness: diversify your sources.

◮ Randomness: more sources cannot hurt you (unless there
are hidden correlations).

◮ Run randomness tests.

◮ Test for randomness — in the stream, and across streams
(would have identified WEP attacks as well).

◮ Remember: You can only FAIL at randomness tests.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 33/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Selecting Prime Numbers

1 Pick a random seed.

2 Put into a PRNG.

3 Produce a stream of bits.

4 Take a chunk of bits, and test whether they compose a
random number.

5 If so, output number. If more random primes are needed,
go to Step 3.

6 If the number is not prime, go to Step 3.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 34/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

What can Possibly Go Wrong?

1 Pick a random seed.

2 Put into a PRNG.

3 Produce a stream of bits.

4 Take a chunk of bits, and test whether they compose a
random number.

5 If so, output number. If more random primes are needed,
go to Step 3.

6 If the number is not prime, go to Step 3.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 35/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

In Theory there is no Difference between Theory

and Practice . . .

◮ [H+12] gathered 12.8M TLS public keys and 10.2M SSH
public keys.

◮ Using some quick algorithms (DJB’s algorithm) they
found pairs of keys that share prime numbers.

◮ Such pairs of keys allow using gcd(·) to find the prime
numbers themselves (i.e., factorizing the RSA key)

◮ Which is a bad thing. . .

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 36/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Summary of [H+12] Results

TLS SSH
Total # of Keys 12,828,613 10,216,363
Repeated Keys (RKs) 7,770,232 (60.5%) 6,642,222 (65.0%)
Vulnerable RK 714,243 (5.57%) 981,166 (9.6%)
Default Keys 670,391 (5.23%)
Low-entropy RK 43,852 (0.34%)
Factored RSA keys 64,081 (0.5%) 2,459 (0.03%)
Compromised DSA keys 105,728 (1.03%)
Debian weak keys (!) 4,147 (0.03%) 53,141 (0.52%)
512-bit RSA keys 123,038 (0.96%) 8,459 (0.08%)

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 37/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

What Went Wrong? (partial list)

◮ Sites using default keys. with certificates(!)

◮ Citrix servers using shared keys (again some with
certificates).

◮ Most repeated keys — ok (used in hosting services).
Some — low entropy of the PRNG.

◮ Many routers, server management cards, VPN devices,
VoIP products, and network storage devices suffered from
these issues.

But Why?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 38/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Recall the Entropy Sources:

◮ Hard-disk access times — SSDs do not have as diverse
access times.

◮ Network activity — Network devices are initialized in
quiet networks.

◮ User interface (keyboard/mouse/. . . ) — most devices no
longer have a lot of user interface.

◮ Process id — system starts assigning pids at 0.
◮ Leftovers in memory — No leftovers — devices have a

“zeroed” memory.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 39/ 56



Motivation GSM Entropy PKI Why How Debian P’s and Q’s

Conclusions (and Mitigation)

◮ OS developers:
◮ Expose good randomness.
◮ Explicitly define randomness assumptions.

◮ Library developers:
◮ Set default at most secure option (OpenSSL used

/dev/urandom).
◮ Do not generate keys immediately one after the other

(let some entropy “brew”).
◮ Pass OS information onwards.

◮ Developers:
◮ Generate keys when needed (not in install/first boot).
◮ Collect entropy.
◮ NO DEFAULT KEYS!
◮ Consider seeding entropy a-priori at production.
◮ Obey OS restrictions.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 40/ 56



Motivation GSM Entropy PKI Flame Certificates

The Story of Flame

◮ Along with Stuxnet considered to be one of the worms
used to hack Iranian nuclear effort.

◮ A very complicated and advanced malware.

◮ Probably installed by an infected USB device.

Wait!
How come it installed when software signatures are

used?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 42/ 56



Motivation GSM Entropy PKI Flame Certificates

Signing Code

◮ Generally speaking, today’s code is digitally signed by
authors.

◮ A digital signature sig = S(M), is a string of bits that
authenticate the source of a message M (including that it
was not tampered with).

◮ To verify a signature, the recipient obtains the signer’s
public key pk and checks whether (sig ,M) is valid
according to pk.

◮ But how does the recipient know pk?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 43/ 56



Motivation GSM Entropy PKI Flame Certificates

Quick and Dirty Introduction to Certificates

◮ Assume we have a trusted third party.
◮ OK, not 100% trusted with everything. Just that it is

trusted enough to link identity with a public key.
◮ Then, this entity can sign “attestations” of the form

(id , pk) saying user id has public key pk.
◮ Signature to be done using the trusted entity public key

pkCA.

How do we know pkCA?

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 44/ 56



Motivation GSM Entropy PKI Flame Certificates

Quick and Dirty Introduction to Certificates (cont.)

◮ The idea: you know pkCA in advance.

◮ In each browser there are about 100 pre-approved CAs
(certification authorities), with their public key.

◮ What to do with a new CA?

◮ CAs are allowed to issue a “special” certificate of the
form: (newCA, id(newCA), pk(newCA)).

◮ So if you know one of the CAs that signed a certificate
for the new CA, you are set to go.

◮ Of course, you may not know any CA signing for the new
CA. But maybe one of them has a certificate issued by a
CA you do know. . .

◮ And this is called certificate chain.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 45/ 56



Motivation GSM Entropy PKI Flame Certificates

What Failed in the Case of Flame?

◮ Flame was signed by Microsoft.

◮ But this is due to some cryptanalytic attack based on
MD5 weaknesses.

◮ Roughly speaking, you never sign a message, but its
digest.

◮ MD5 was well known since 2004 to be weak.

◮ Was still used in 2008.

◮ And the phasing out is still ongoing.

◮ But this is not what I am going to discuss.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 46/ 56



Motivation GSM Entropy PKI Flame Certificates

What Failed in the Case of Flame? (cont.)

◮ The original certificate was issued to an (unknown) entity
for use in Outlook systems.

◮ Due to mishandling of permissions on certificates, such
certificates whose root was Microsoft, were allowed to
sign code.

◮ Due to mishandling of permissions on certificates, such
certificates whose root was Microsoft, were allowed to
sign code.

◮ And the code was trusted because it was “approved” by
Microsoft.

◮ In other words — you could install without user’s
interaction/approval.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 47/ 56



Motivation GSM Entropy PKI Flame Certificates

Conclusions (and Mitigation)

◮ Mitigate weak crypto.

◮ Do not allow installation without user’s interaction
(unless signed directly or with a special key).

◮ Trust is not transitive.

◮ Domain separation. Good for certificates (as well).

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 48/ 56



Motivation GSM Entropy PKI Flame Certificates

How to Validate a Certificate

◮ As mentioned before, each user has a list of trusted CAs:
◮ Verisign,
◮ Comodo,
◮ Entrust,
◮ . . .
◮ CNNIC

◮ When validating a certificate, we check whether the
signing key is known (and trusted).

◮ If not, we recursively validate the signing key.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 49/ 56



Motivation GSM Entropy PKI Flame Certificates

CNNIC — The Chinese are After You

◮ In 2010 the Chinese CNNIC was added to the list of
trusted CAs of Firefox.

◮ In other words, any Firefox trusts certificates issued by
CNNIC.

◮ Including for gmail. Or bankofamerica.com.

◮ In other words, a CA can issue certificates “incorrectly”.

◮ Partial solution: Check that the certificate was issued by
someone related.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 50/ 56



Motivation GSM Entropy PKI Flame Certificates

Diginator — The Iranian are After You

◮ In 2011, the Dutch CA, diginator was taken over by the
Dutch government.

◮ Apparently, their systems were hacked.

◮ And their private key was used to sign rouge certificates
for several domains (mostly google related).

◮ These certificates were used to spy on Iranian activists.

◮ After the forensics, diginator was shut down.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 51/ 56



Motivation GSM Entropy PKI Flame Certificates

The Real Issue

◮ Obviously, joining the CA roots or hacking into a CA
invalidates the entire security model.

◮ However, there are better attack vectors:
◮ Users accept all certificates (self-signed, expired, etc.)
◮ Users can be easily tricked to not use secure connections.
◮ Users . . .

◮ But also developers are to blame. . .

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 52/ 56



Motivation GSM Entropy PKI Flame Certificates

The Real Issue (cont.)

◮ Not all applications check certificates.

◮ In [F+13] it was found out that:
◮ Of about 13,500 applications in google play, only 17

implemented certificate validation correctly.
◮ Common errors:

◮ Accept all certificates (89%)
◮ Only check expiration (7.5%)
◮ Break SSL

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 53/ 56



Motivation GSM Entropy PKI Flame Certificates

The Reason

◮ Apparently, developers use self-signed certificate for tests.

◮ These certificates cause issues when using default
implementations.

◮ So they google the error code. The first answer is “Set
handle-validation-fails to null”

◮ Obviously, this is a good way to solve debugging issues.

◮ And ruin security if you do not handle validation errors
after development ends.

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 54/ 56



Motivation GSM Entropy PKI Flame Certificates

Conclusions (and Mitigation)

◮ Trust is not transitive.

◮ Stress-test using real certificates.

◮ Implement certificate pinning.

◮ Ask google, think on your own (TM).

◮ Try to rely on libraries (and good ones).

◮ Or develop one. . .

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 55/ 56



Motivation GSM Entropy PKI Flame Certificates

Questions?

Thank you very much for your attention!

Orr Dunkelman The Book of Bad Crypto Decisions (part 1 of 1,000,000) 56/ 56


	The Motivation for this Talk
	The (In)Security of GSM
	Quick Introduction to how GSM Works
	And One Key to Rule Them All
	How (Not) to Authenticate Control
	Compress-Encrypt-Authenticate-Error Correct

	On the Importance of Entropy in Security
	Why Entropy is Needed
	How to Generate Entropy
	The Debian Bug
	How (Not) to Select Prime Numbers

	Whose Key is it Anyway?
	How (Not) to Build a PKI
	The (Not) so Subtle Way to Validate Certificates


