
The Eobj Perl environment

Eli Billauer

elib@flextronics.co.il

http://search.cpan.org/author/BILLAUER/

The Eobj Perl environment – p.1

Lecture overview

Introduction: Me, Eobj and OO programming

Eobj classes – how to write and use them

Properties in Eobj

Special goodies of Eobj :
The object dumper
The global object
Destroying objects
Constant properties
Magic callbacks
Property paths
Error handling

Conclusion

The Eobj Perl environment – p.2

About me

Finished Electrical Engineering at the Technion in 1993

Freelancer since 2000

Main interests: Digital communication, signal processing (theory
and implementation), MATLAB simulations, VLSI (writes in
Verilog).

Linux & Perl fan mainly because they get the job done

The Eobj Perl environment – p.3

How Eobj came to life

Object-Oriented for “the People”

A toolkit for the Perlilog project

Eobj has proved itself for a certain purpose

My work with Flextronics Semiconductors lead to developing a
source code integration tool

Perlilog integrates IP cores for ASIC, written in Verilog (see
http://www.opencores.org/perlilog/).

Flextronics’ supported this project warmly

Perlilog and Eobj are released under GPL

Download Eobj from CPAN:
http://search.cpan.org/author/BILLAUER/

The Eobj Perl environment – p.4

Why Object Oriented programming in Perl?

Sometimes it’s the natural choice

Perl has an excellent support of objects and classes

Elegancy

Large projects

Teamwork and code integration (don’t hack my code...)

Flexibility

The Eobj Perl environment – p.5

Why OO programming in Perl is uncommon

... or: The thing that DON’T bother you with Eobj ...

Need to understand references

Need to understand the bless() thing

Need to understand Perl modules

Properties are hash entries (scalar)

Mess with getting new() right

No elegant way to destroy objects

The Eobj Perl environment – p.6

A short Eobj script

Now we use the class myclass.pl:
use Eobj;

inherit(’myclass’,’myclass.pl’,’root’);
init;

$object = myclass->new(name => ’MyObject’);
$object->sayit(’hello’);

And then we run the script:
$ perl -w trymyclass.pl
I was told to say hello

The Eobj Perl environment – p.7

A short Eobj class

Let’s assume that we have a file named myclass.pl which is:

sub sayit {
my $self = shift;
my $what = shift;
print "I was told to say $what\n";

}

The Eobj Perl environment – p.8

Rules for writing a class

A bunch of subroutines

The class file does nothing (no errors) on perl -w

Implicitly strict vars

Careful overriding the new() method

No hassle with OO-related variables allowed

No global variables

Package name is unknown and must not be set

The Eobj Perl environment – p.9

Relations between classes

The subroutines become a class’ methods when declared with
inherit() or override()

inherit() – Inherit methods from given class

inheritdir() – Scan a directory for class files. Directory tree
becomes class tree.

override() – Override methods of given class, and “steal” its
name (!)

Overriding vs. Extending

SUPER::method calls – as usual

The root class can be overridden

underride() – catch leftover calls

The Eobj Perl environment – p.10

An example with two classes

Now we have a file named hisclass.pl:
sub sayit {
my $self = shift;

$self->SUPER::sayit(@_); # Call original method

my $what = shift;
print "And he said $what back\n";

}

The Eobj Perl environment – p.11

An example with two classes (cont.)

First we use plain inherit():
use Eobj;

inherit(’myclass’,’myclass.pl’,’root’);
inherit(’hisclass’, ’hisclass.pl’,’myclass’);
init;

$object = hisclass->new(name => ’MyObject’);
$object->sayit(’hello’);

Trying it out:
$ perl -w tryclasses.pl
I was told to say hello
And he said hello back

The Eobj Perl environment – p.12

An example with two classes (cont.)

And the script goes:
use Eobj;

inherit(’myclass’,’myclass.pl’,’root’);
override(’myclass’, ’hisclass.pl’); # Only difference!
init;

$object = myclass->new(name => ’MyObject’);
$object->sayit(’hello’);

Trying it out (just the same):
$ perl -w tryclasses.pl
I was told to say hello
And he said hello back

The Eobj Perl environment – p.13

Every Object has a Name

The object’s name must be unique

new() returns the object’s reference, not its name

The suggestname() method

The objbyname() method

Reason: References can’t be hash keys (string translation)

Good for error messages

Default name set if not given in new() call

$name = globalobj->suggestname(’MyObject’);
$object = myclass->new(name => $name);
And now we make a useless sanity check:
print "Something is very wrong!\n"

unless (globalobj->objbyname($name) == $object);

The Eobj Perl environment – p.14

Dynamic loading of classes

The classes are loaded (parsed by the Perl interpreter) only
when needed

inherit() and override() does not even verify that the
class’ file exists.

A rich class library can be declared without delaying execution

Perl’s AUTOLOAD mechanism is used

When updating a class, try it actively (create an object)

Special handling of bareword warnings

The Eobj Perl environment – p.15

Three stages in the execution cycle

1. Class tree declarations (inherit() and override())

2. Calling init()

3. Creating and using objects

Breaking this order is possible, but will cause bugs in the long
run

init() creates the global object

init() looks for init.pl in the current directory

If found, the user_init class is declared from it, and the
init() method is called. (An object is not created – no call to
new())

The user’s init() method should not declare classes

The Eobj Perl environment – p.16

Properties: set() and get()

In a nutshell:

$object->set(’property’, ’value’);
$value = $object->get(’property’);

Properties can be scalars, lists or hashes

Unlike Perl variables, their name doesn’t carry their type

The Eobj Perl environment – p.17

Properties: Examples

Writing properties and reading them back...

$object->set(’myscalar’, ’The value’);
$scalar = $object->get(’myscalar’);

$object->set(’mylist’, ’One’, ’Two’, ’Three’);
@list = $object->get(’mylist’);

%hash = (’Foo’ => ’Bar’,
’Daa’ => ’Doo’);

$object->set(’myhash’, %hash);
%the_hash = $object->get(’myhash’);

The Eobj Perl environment – p.18

Rules for using properties

Forget this slide if all you need is in the previous one

Direct access to the object’s referenced hash is unallowed

Internally, all properties are lists

get() is context sensitive (uses wantarray)

In scalar context, get() returns the first item in the list, not the
number of elements!

The Eobj Perl environment – p.19

Many ways to say nothing

If a property is undefined, get() returns undef in scalar
context, and () in list context.

No warning is issued when get() reads an undefined property.

There are plenty of ways to remove (“undef”) a property:

$test -> set(’property’, undef);
$test -> set(’property’);
$test -> set(’property’, ());
$test -> set(’property’, (undef));

But this will not remove the propery, but set it to (undef, undef):

$test -> set(’property’, (undef, undef));

The Eobj Perl environment – p.20

pshift(), punshift() and friends

pshift(), punshift(), ppush() and ppop() behave like
their Perl siblings

punshift() and ppop() return undef when called on empty
lists = undefined properties

For example:

$object->set(’mylist’, ’One’, ’Two’, ’Three’);
print $object->pshift(’mylist’)."\n";

will print One

The Eobj Perl environment – p.21

The Object dumper

A debug tool

Dumps basic information and the properties of one or all objects

To dump all objects from the main script:
globalobj->objdump;

The Eobj Perl environment – p.22

The Global Object

Generated by Eobj at init() call

Created with the global class which is derived from root

One global object per Perl execution

Holds “global variables” as properties

Used in main scripts to run methods of “just some object”

The globalobj() command returns its reference

The root class’ globalobj() method does the same

The Eobj Perl environment – p.23

Destroying objects in Eobj

An object is destroyed by calling the destroy() method

Hash will be emptied

Error message when trying to call a method on a destroyed
object

The native Perl’s DESTROY() method is never called.

destroy() may be extended. The object is stable when this
method is called.

Before exiting, all objects are destroy()ed in reverse order of
creation

On script termination: survivor() is called just before
destroy().

The Eobj Perl environment – p.24

Constant properties

Created and assigned value with the const() method

Constant properties must not be changed or a fatal error will be
issued

const() can be called again on the property, if the “new value”
is “the same”.

If you know that some property mustn’t change, make it
constant. This detects bugs.

seteq() – change the meaning of “the same”

$object->const(’Creators’, 1);
$howmany = $object->get(’Creators’);

The Eobj Perl environment – p.25

Magic callbacks

Only on constant properties

Execute a routine when property is assigned a value

May fire off right away

Maintain relations between properties

Anonymous subroutines: Know your scope

The Eobj Perl environment – p.26

Magic callbacks – example

use Eobj;
init;

$obj1 = root->new(name => ’One’);
$obj2 = root->new(name => ’Two’);

$obj1->addmagic(’the-property’, sub {
$obj2->const(’other-property’,

$obj1->get(’the-property’));
});

$obj1->const(’the-property’, ’fire me off!’);

print $obj2->get(’other-property’);

The Eobj Perl environment – p.27

Initalizing properties with new()

It’s convenient to assign values to some properties at object
creation

These properties will be constant properties

The name property must always be assigned a value

Example:

$object = root->new(name => ’MyObject’,
TheString => ’TheValue’,
myList => [’One’, ’Two’, ’Three’],
Five => 5);

The Eobj Perl environment – p.28

The property path

Properties may be accessed in a “directory”-like structure

Useful on the global object to avoid name collisions

$object->get(’property’) and
$object->get([’property’]) is exactly the same thing.

A better use: (MyThings is the “directory”)

globalobj->set([’MyThings’, ’TheThing’], ’This’);

The Eobj Perl environment – p.29

Useful methods

who() – An informal string about the object (error messages...)

isobject() – Does some scalar consist of an object?

safewho() – who() on another object (possibly a non-object)

prettyval() – Turn value into a human-readable string

linebreak() – Break (multi-line) string nicely

$object = myclass->new(name => ’MyObject’);
print $object->who;

will print object ’MyObject’

The Eobj Perl environment – p.30

Error messages

Eobj has a set of functions to report errors

Work like die() and warn()

Based upon the Carp module

blow() is used instead of die() when the error is “natural”
(failure to open a file etc.)

puke() is used instead of die() when the error is unexpected,
and hence due to a bug or misuse of the object. A stack trace is
given.

Better than die() because the error message can be
redirected.

puke("sayit called with no argument\n")
unless (defined $what);

The Eobj Perl environment – p.31

Summary

Anyone can write object oriented in Perl

No need to think big when the project is small

No mysterious syntax

No mysterious variables

Easy to access properties

The Eobj Perl environment – p.32

Thank you

Eobj can be downloaded at
http://search.cpan.org/author/BILLAUER/

Questions?

Slides were made with LATEX, using the prosper document class

The Eobj Perl environment – p.33

	Lecture overview
	About me
	How eobj came to life
	Why Object Oriented programming in Perl?
	Why OO programming in Perl is uncommon
	A short eobj script
	A short eobj class
	Rules for writing a class
	Relations between classes
	{An example with two classes}
	An example with two classes (cont.)
	An example with two classes (cont.)
	Every Object has a Name
	Dynamic loading of classes
	Three stages in the execution cycle
	Properties: 	exttt {set()}
and 	exttt {get()}
	Properties: Examples
	Rules for using properties
	Many ways to say nothing
		exttt {pshift()},
	exttt {punshift()} and friends
	The Object dumper
	The Global Object
	Destroying objects in eobj
	Constant properties
	Magic callbacks
	Magic callbacks -- example
	Initalizing properties with 	exttt {new()}
	The property path
	Useful methods
	Error messages
	Summary
	Thank you

