
Trust and Open Source
Based on: “Reflections on Trusting Trust” by Ken Thompson

Alon Altman
alon@haifux.org

Haifa Linux Club

Trust and Open Source – p. 1/20



Trust

Trust and Open Source – p. 2/20



Trust
From the dictionary:

trust n., Firm reliance on the integrity,
ability, or character of a person or thing.

So, who do you trust?

Trust and Open Source – p. 3/20



Case Study: Joe Newbie
• Joe Newbie buys a PC from Dell, preloaded with

Windows XP home.
• He connects to his ISP (AOL), downloads and

installs Kazaa.
• The next day, he goes to the bank and gets a

password for internet access.
• He launches IE and visits the bank’s site, noticing

the key symbol and proceeds to enter his
password, and do his business.

Who does Joe Newbie trust?

Trust and Open Source – p. 4/20



Case Study: Joe Newbie
• Joe Newbie buys a PC from Dell, preloaded with

Windows XP home.
• He connects to his ISP (AOL), downloads and

installs Kazaa.
• The next day, he goes to the bank and gets a

password for internet access.
• He launches IE and visits the bank’s site, noticing

the key symbol and proceeds to enter his
password, and do his business.

Who does Joe Newbie trust?

Trust and Open Source – p. 4/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.

• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.

• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.

• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.

• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.

• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.

• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.

• Any other person who had physical access to the
machine.

• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.

• Anyone else?

Trust and Open Source – p. 5/20



Joe Newbie - Trust
Who does Joe Newbie (implictly) trust?

• Dell, suppliers of his PC.
• Microsoft, suppliers of the OS and browser.
• AOL, his ISP.
• Sherman Networks, suppliers of Kazaa.
• Suppliers of spyware bundled with Kazaa.
• The bank.
• Verisign, who signed the bank’s certificate.
• Any other person who had physical access to the

machine.
• Anyone else?

Trust and Open Source – p. 5/20



Case Study: Bob Hacker
• Bob built his own PC from parts mail-ordered

direct from suppliers around the world.
• Bob’s ISP is a local Linux-supportive ISP which

sponsors installation parties.
• Bob used a Knoppix CD to download Debian CD

images from the web, carefully checking the
MD5 sum of each CD against the published sum
from debian.org.

• He then burned these Debian CDs, and proceeded
to install a clean system.

• After the install he connected to the Internet,
downloaded a new version of Mozilla from
mozilla.org, and proceeded to connect to
amazon.com and make an order.

Trust and Open Source – p. 6/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.

• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.

• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.

• Debian, suppliers of the distro, and sysadmins of
debian.org.

• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.

• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.

• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.

• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.

• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.

• Anyone else?

Trust and Open Source – p. 7/20



Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

• Knoppix, suppliers of the boot CD.
• Whoever gave him the Knoppix CD.
• The ISP.
• Debian, suppliers of the distro, and sysadmins of

debian.org.
• The Open-Source code review process.
• Mozilla maintainers and sysadmins.
• Amazon.
• Verisign, who signed the Amazon’s certificate.
• Anyone else?

Trust and Open Source – p. 7/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.
• Just this week, Gnome 2.6 release was

delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?
• The infamous TCPWrappers exploit of ’99

opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.

• Just this week, Gnome 2.6 release was
delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?
• The infamous TCPWrappers exploit of ’99

opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.
• Just this week, Gnome 2.6 release was

delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?
• The infamous TCPWrappers exploit of ’99

opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.
• Just this week, Gnome 2.6 release was

delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?

• The infamous TCPWrappers exploit of ’99
opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.
• Just this week, Gnome 2.6 release was

delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?
• The infamous TCPWrappers exploit of ’99

opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Is this really such a big deal?
• Do open source servers really get hacked?

• debian.org was recently broken into.
• Just this week, Gnome 2.6 release was

delayed due to a break in to
www.gnome.org.

• Do people really insert exploits in open source?
• The infamous TCPWrappers exploit of ’99

opened a root shell in what was supposed to
be security product.

• In 2002, trojan versions of the popular sniffer
tools tcpdump and libpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source – p. 8/20



Case Study: Paranoid Mike
• Mike works for the NSA, he made two Linux

from Scratch systems from a certified-good
NSALinux PC at work.

• Mike personally checked every line of code of
every script, file and program installed on his
LFS system before compiling and installing.

• He has then connected one machine to
high-speed internet, allowing only incoming SSH
connections, writing the host key fingerprint on
paper to verify its identity.

• He has then connected from the second machine
to the first.

Does Mike really trust noone but himself?

Trust and Open Source – p. 9/20



Case Study: Paranoid Mike
• Mike works for the NSA, he made two Linux

from Scratch systems from a certified-good
NSALinux PC at work.

• Mike personally checked every line of code of
every script, file and program installed on his
LFS system before compiling and installing.

• He has then connected one machine to
high-speed internet, allowing only incoming SSH
connections, writing the host key fingerprint on
paper to verify its identity.

• He has then connected from the second machine
to the first.

Does Mike really trust noone but himself?
Trust and Open Source – p. 9/20



Reflections on Trusting Trust

Trust and Open Source – p. 10/20



Stage 1 — A Quine
Here is a simple self-generating program:
char s[] = {’0’,’}’,’;’,’\n’,’\n’,’/’,

’*’, ...(deleted)... , 0};

/* The string s is a representation
* of the body of this program from
* ’0’ to the end.
*/

main() {
int i;
printf("char s[] = {");
for (i=0; s[i]; i++)

printf("%d,",s[i]);
printf("%s",s);

}
Trust and Open Source – p. 11/20



Stage 1 — Comments
• The program in the previous slide, produces itself

when run (or actually, produces a
self-reproducing program).

• It can be easily written by another program.
• This program can contain an arbitrary amount of

excess baggage. In this example, even the
comment is reproduced.

Trust and Open Source – p. 12/20



Stage 2
Consider the code used to parse special characters
such as \n in the C compiler. The code might look
something like this:

...
c = next();
if (c!=’\\’) return (c);
c = next(); /* escape sequence */
if (c==’\\’) return (’\\’);
if (c==’n’) return (’n’);
...

This code ’knows’ in a completely portable way what
character represents a newline in any character set,
thus recompling itself and perpetuating the
knowledge.

Trust and Open Source – p. 13/20



Stage 2 — Problem
Suppose we want to add a vertical tab character \v to
the C compiler:

...
c = next();
if (c!=’\\’) return (c);
c = next(); /* escape sequence */
if (c==’\\’) return (’\\’);
if (c==’n’) return (’\n’);
if (c==’v’) return (’\v’);
...

This code does not work, as the binary version of the
C compiler does not yet know what \v means.

Trust and Open Source – p. 14/20



Stage 2 — Bootstrapping
To let the compiler know about \v we must tell it
once that it is ASCII code 11:

...
c = next();
if (c!=’\\’) return (c);
c = next(); /* escape sequence */
if (c==’\\’) return (’\\’);
if (c==’n’) return (’\n’);
if (c==’v’) return (11);
...

Now we can use our new compiler to compile the
code from the previous slide, as the compiler has
“learnt” this new definition.

Trust and Open Source – p. 15/20



Stage 3
• Now, again in the C compiler, consider a function
compile used to compile the next chunk of
source.

• Suppose we modify the compiler, to deliberately
miscompile the source whenever a patteren is
matched, thus creating a “Trojan horse”:

void compile(char *s) {
if (match(s,"pattern")) {
compile("bug");
return;

}
...

}

Trust and Open Source – p. 16/20



Stage 3 — The bug
• Suppose we code a bug that will deliberately

miscompile OpenSSH (or actually, PAM) to
accept a known password in addition to the real
one.

• Then we use the above scheme to change the
compiler to automatically insert the bug.

• This bug will easily be noticed if you release the
code to the compiler.

• However, if you change only the binary version, a
re-compile of the compiler (like Mike and the
Debian maintainers do) will ensure the bug be
gone.

Trust and Open Source – p. 17/20



Stage 3 — final version
To solve this problem, we change the compile
function as follows:

void compile(char *s) {
if (match(s,"pattern1")) {
compile("bug1"); return;

}
if (match(s,"pattern2")) {
compile("bug2"); return;

}
...

}

Suppose bug1 inserts the bug into OpenSSH, and
bug2 is a self-reproducing program inserting both
bugs into the compiler.

Trust and Open Source – p. 18/20



Moral
• No matter how much you inspect the source you

must trust someone.
• Even if you check the binary of the compiler, a

bug may be hidden in your processor’s
microcode.

• In fact, trecherous hardware that will not give the
user control over her own machine is in
production as we speak.

Trust and Open Source – p. 19/20



Discussion

Trust and Open Source – p. 20/20


	{Trust}
	{Trust}
	{Case Study: Joe Newbie}
	{Case Study: Joe Newbie}

	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}

	{Case Study: Bob Hacker}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}

	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}

	{Case Study: Paranoid Mike}
	{Case Study: Paranoid Mike}

	{Reflections on Trusting Trust}
	{Stage 1 --- A Quine}
	{Stage 1 --- Comments}
	{Stage 2}
	{Stage 2 --- Problem}
	{Stage 2 --- Bootstrapping}
	{Stage 3}
	{Stage 3 --- The bug}
	{Stage 3 --- final version}
	{Moral}
	{Discussion}

