Trust and Open Source

Based on: “Reflections on Trusting Trust” by Ken Thompson

Alon Altman

al on@ai f ux. org

Haifa Linux Club

Trust and Obpen Source — n. 1/7

Trust

Trust and Obpen Source — n. 2/7

Trust

From the dictionary:

trust n., Firm reliance on the integrity,
ability, or character of a person or thing.

So, who do you trust?

Trust and Open Source — n. 3/7

Case Study: Joe Newbie

Joe Newbie buys a PC from Dell, preloaded with
Windows XP home.

He connects to his ISP (AOL), downloads and
Installs Kazaa.

The next day, he goes to the bank and gets a
password for internet access.

He launches IE and visits the bank’s site, noticing
the key symbol and proceeds to enter his
password, and do his business.

Trust and Open Source — n. 4/7

Case Study: Joe Newbie

Joe Newbie buys a PC from Dell, preloaded with
Windows XP home.

He connects to his ISP (AOL), downloads and
Installs Kazaa.

The next day, he goes to the bank and gets a
password for internet access.

He launches IE and visits the bank’s site, noticing
the key symbol and proceeds to enter his
password, and do his business.

Trust and Open Source — n. 4/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

rust and Open Source

—n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.
» Microsoft, suppliers of the OS and browser.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.
» Microsoft, suppliers of the OS and browser.
« AOL, his ISP.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

» Microsoft, suppliers of the OS and browser.
« AOL, his ISP.

» Sherman Networks, suppliers of Kazaa.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

Microsoft, suppliers of the OS and browser.
AOL, his ISP.

Sherman Networks, suppliers of Kazaa.
Suppliers of spyware bundled with Kazaa.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

» Microsoft, suppliers of the OS and browser.
« AOL, his ISP.

» Sherman Networks, suppliers of Kazaa.
 Suppliers of spyware bundled with Kazaa.
* The bank.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

Microsoft, suppliers of the OS and browser.
AOL, his ISP.

Sherman Networks, suppliers of Kazaa.
Suppliers of spyware bundled with Kazaa.
The bank.

Verisign, who signed the bank’s certificate.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

* Dell, suppliers of his PC.

Microsoft, suppliers of the OS and browser.
AOL, his ISP.

Sherman Networks, suppliers of Kazaa.
Suppliers of spyware bundled with Kazaa.
The bank.

Verisign, who signed the bank’s certificate.

Any other person who had physical access to the
machine.

Trust and Open Source — n. 5/7

Joe Newblie - Trust
Who does Joe Newbie (implictly) trust?

Dell, suppliers of his PC.

Microsoft, suppliers of the OS and browser.
AOL, his ISP.

Sherman Networks, suppliers of Kazaa.
Suppliers of spyware bundled with Kazaa.
The bank.

Verisign, who signed the bank’s certificate.

Any other person who had physical access to the
machine.

Anyone else?

Trust and Open Source — n. 5/7

Case Study: Bob Hacker

Bob built his own PC from parts mail-ordered
direct from suppliers around the world.

Bob’s ISP is a local Linux-supportive ISP which
sponsors installation parties.

Bob used a Knoppix CD to download Debian CD
Images from the web, carefully checking the
MD5 sum of each CD against the published sum
from debi an. or g.

He then burned these Debian CDs, and proceeded
to install a clean system.

After the install he connected to the Internet,
downloaded a new version of Mozilla from
nozi | | a. or g, and proceeded to connect to
amazon. comand make an order.

Trust and Open Source — n. 6/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.

rust and Open Source

—n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
» Whoever gave him the Knoppix CD.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
» Whoever gave him the Knoppix CD.
e The ISP.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
» Whoever gave him the Knoppix CD.
e The ISP.

 Debian, suppliers of the distro, and sysadmins of
debian.org.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
Whoever gave him the Knoppix CD.
The ISP.

Debian, suppliers of the distro, and sysadmins of
debian.org.

The Open-Source code review process.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
» Whoever gave him the Knoppix CD.
e The ISP.

 Debian, suppliers of the distro, and sysadmins of
debian.org.

» The Open-Source code review process.
» Mozilla maintainers and sysadmins.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

« Knoppix, suppliers of the boot CD.
» Whoever gave him the Knoppix CD.
e The ISP.

 Debian, suppliers of the distro, and sysadmins of
debian.org.

» The Open-Source code review process.
» Mozilla maintainers and sysadmins.
* Amazon.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

Knoppix, suppliers of the boot CD.
Whoever gave him the Knoppix CD.
The ISP.

Debian, suppliers of the distro, and sysadmins of
debian.org.

The Open-Source code review process.
Mozilla maintainers and sysadmins.

Amazon.

\erisign, who signed the Amazon’s certificate.

Trust and Open Source — n. 7/7

Bob Hacker - Trust
Who does Bob Hacker (implictly) trust?

Knoppix, suppliers of the boot CD.
Whoever gave him the Knoppix CD.
The ISP.

Debian, suppliers of the distro, and sysadmins of
debian.org.

The Open-Source code review process.
Mozilla maintainers and sysadmins.

Amazon.

\erisign, who signed the Amazon’s certificate.
Anyone else?

Trust and Open Source — n. 7/7

Is this really such a big deal?

» Do open source servers really get hacked?

ust and Open Source

—n. 8/7

Is this really such a big deal?

» Do open source servers really get hacked?
« debi an. or g was recently broken into.

ource —n. 8/7

Is this really such a big deal?

» Do open source servers really get hacked?

« debi an. or g was recently broken into.

« Just this week, Gnome 2.6 release was
delayed due to a break in to
WWW, gnone. or g.

Trust and Open Source — n. 8/7

Is this really such a big deal?

» Do open source servers really get hacked?

« debi an. or g was recently broken into.

« Just this week, Gnome 2.6 release was
delayed due to a break in to
WWW, gnone. or g.

* Do people really insert exploits in open source?

Trust and Open Source — n. 8/7

Is this really such a big deal?

» Do open source servers really get hacked?

« debi an. or g was recently broken into.

« Just this week, Gnome 2.6 release was
delayed due to a break in to
WWW, gnone. or g.

» Do people really insert exploits in open source?

e The infamous TCPWrappers exploit of 99
opened a root shell in what was supposed to
be security product.

Trust and Open Source — n. 8/7

Is this really such a big deal?

» Do open source servers really get hacked?

« debi an. or g was recently broken into.

« Just this week, Gnome 2.6 release was
delayed due to a break in to
WWW, gnone. or g.

» Do people really insert exploits in open source?

e The infamous TCPWrappers exploit of 99
opened a root shell in what was supposed to
be security product.

 In 2002, trojan versions of the popular sniffer
toolst cpdunp and | i bpcap were placed
on www.tcpdump.org, after it was hacked.

Trust and Open Source — n. 8/7

Case Study: Paranoid Mike

» Mike works for the NSA, he made two Linux
from Scratch systems from a certified-good
NSALInux PC at work.

» Mike personally checked every line of code of
every script, file and program installed on his
_FS system before compiling and installing.

 He has then connected one machine to
nigh-speed internet, allowing only incoming SSH
connections, writing the host key fingerprint on
paper to verify its identity.

» He has then connected from the second machine
to the first.

Trust and Open Source — n. 9/7

Case Study: Paranoid Mike

» Mike works for the NSA, he made two Linux
from Scratch systems from a certified-good
NSALInux PC at work.

» Mike personally checked every line of code of
every script, file and program installed on his
_FS system before compiling and installing.

 He has then connected one machine to
nigh-speed internet, allowing only incoming SSH
connections, writing the host key fingerprint on
paper to verify its identity.

» He has then connected from the second machine
to the first.

Trust and Open Source — n. 9/7

Reflections on Trusting Trust

Stage 1 — A Quine

Here Is a simple self-generating program:
char s[] ={'0,7}", ;' ,'"\'n" ,’\n" "/’
'x*7 0 ...(deleted)... , 0}

/[* The string s Is a representation
* of the body of this programfrom
* 0 to the end.

*/
mal n() {
Int 1,
printf("char s[] ={");
for (1=0; s[i]; 1++)
printf ("%, ",s[1]);
printf("%",s);

Trust and Opnen Source — 0. 11/2

Stage 1 — Comments

» The program In the previous slide, produces itself
when run (or actually, produces a
self-reproducing program).

* |t can be easily written by another program.

 This program can contain an arbitrary amount of
excess baggage. In this example, even the
comment is reproduced.

Trust and Opnen Source — n. 12/7

Stage 2

Consider the code used to parse special characters
such as \ n in the C compiler. The code might look
something like this:

C = next(),

1 f (c!'="\\") return (c);

c = next(); /* escape sequence */
I1f (c=="\\") return ("\\');

I1f (c=="n") return ('n’);

This code ’knows’ in a completely portable way what
character represents a newline in any character set,
thus recompling itself and perpetuating the
knowledge.

Trust and Opnen Source — n. 13/7

Stage 2 — Problem

Suppose we want to add a vertical tab character \ v to
the C compiler:

C = next(),

I1f (c!'="\\") return (c);

c = next(); /* escape sequence */
I1f (c=="\\") return ("\\');

If (c=="n") return ('\n’);

I1f (c=="v’') return ('\Vv');

This code does not work, as the binary version of the
C compiler does not yet know what \ v means.

Trust and Opnen Source — n. 14/7

Stage 2 — Bootstrapping

To let the compiler know about \ v we must tell it
once that it is ASCII code 11.

.c”: next () ;

If (c!'="\\") return (c);
C
I1f (c=="\\") return ("\\’);
1f (c=="n") return ('\n’);
1f (c=="v') return (11);

Now we can use our new compiler to compile the
code from the previous slide, as the compiler has
“learnt” this new definition.

next(); /* escape sequence */

Trust and Open Source — D. y

Stage 3

* Now, again in the C compiler, consider a function
conpi | e used to compile the next chunk of

Source.

« Suppose we modify the compiler, to deliberately
miscompile the source whenever a patteren Is
matched, thus creating a “Trojan horse”:

vol d conpil e(char *s) {
1 f (match(s,"pattern”)) {
compi | e(" bug");
ret urn,;

}

Trust and Opnen Source — n. 16/7

Stage 3 — The bug

« Suppose we code a bug that will deliberately
miscompile OpenSSH (or actually, PAM) to
accept a known password in addition to the real
one.

« Then we use the above scheme to change the
compiler to automatically insert the bug.

 This bug will easily be noticed if you release the
code to the compiler.

« However, If you change only the binary version, a
re-compile of the compiler (like Mike and the
Debian maintainers do) will ensure the bug be
gone.

Trust and Opnen Source — n. 17/2

Stage 3 — final version

To solve this problem, we change the conpi | e
function as follows:

vol d conpil e(char *s) {
1 f (match(s,"patternl”)) {
conpi | e("bugl"); return;
}

1 f (match(s, "pattern2”)) {
conpi | e("bug2"); return;
}

}

Suppose bugl inserts the bug into OpenSSH, and
bug? is a self-reproducing program inserting both
bugs into the compiler.

Trust and Opnen Source — n. 18/7

Moral

« No matter how much you inspect the source you
must trust someone.

 Even if you check the binary of the compiler, a
bug may be hidden in your processor’s
microcode.

« |In fact, trecherous hardware that will not give the
user control over her own machine is in
production as we speak.

Trust and Opnen Source — n. 19/7

Discussion

Trust and Open Source — n. 20/7

	{Trust}
	{Trust}
	{Case Study: Joe Newbie}
	{Case Study: Joe Newbie}

	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}
	{Joe Newbie - Trust}

	{Case Study: Bob Hacker}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}
	{Bob Hacker - Trust}

	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}
	{Is this really such a big deal?}

	{Case Study: Paranoid Mike}
	{Case Study: Paranoid Mike}

	{Reflections on Trusting Trust}
	{Stage 1 --- A Quine}
	{Stage 1 --- Comments}
	{Stage 2}
	{Stage 2 --- Problem}
	{Stage 2 --- Bootstrapping}
	{Stage 3}
	{Stage 3 --- The bug}
	{Stage 3 --- final version}
	{Moral}
	{Discussion}

