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Structure of this meeting

@ First hour - lecture
@ Second hour - Q&A
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Outline

o Getting around Linux
@ Your desktop environment
@ The commandline
@ Text editors
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Getting around Linux Your desktop environment

The commandline
Text editors

Outline

o Getting around Linux
@ Your desktop environment

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

“Just like Windows”
Or rather, just like the Mac

@ Icons, documents, right/double clicks
@ Various desktop environments

@ Web browsing

@ Office suite
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Getting around Linux Your desktop environment

The commandline
Text editors

Your home directory

@ Per-user

@ Often saved on the network

@ In Windows - Documents and Settings
@ Hidden .files
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ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting
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Getting around Linux Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting (or CSH)
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Getting around Linux Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting (or CSH)

@ Absolutely not DOS
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ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Basic usage

@ Commands we’ll be using here: 1s, cat, cd, cp, mv, rm,
echo

@ Arrows and Tab
@ SPATH
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ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Basic usage

@ Commands we’ll be using here: 1s, cat, cd, cp, mv, rm,
echo

@ Arrows and Tab
@ SPATH
@ Taught in the course
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ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

T2, SSH, etc

@ From Windows: puTTY

@ From Linux: ssh smyusername@t2.technion.ac.il
@ T2's commandline is extremely similar to Linux’s

@ Do not use telnet!
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0 Getting around Linux

@ Text editors




ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Who cares? / Where’s my IDE?

@ Your most important day-to-day tool
@ Important features

@ No IDEs for CSH

@ VIM and Emacs are installed on T2
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Getting around Linux

Your desktop environment
The commandline
Text editors

@ Familiar and easy to use
@ Syntax highlighting
@ ...Dbut not much else.
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Getting around Linux

Your desktop environment
The commandline
Text editors

@ Familiar and easy to use

@ Syntax highlighting

@ ...Dbut not much else.

@ Recommendation: Learn VIM (vimtutor) or Emacs

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Outline

e Compiling programs
@ Single-file programs
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Compiling programs Single-file programs
Multi-program files

@ Gnu Compiler Collection

@ Modern, full-featured compiler

@ Encapsulates many language compilers and linker

@ T2 has (currently) version 3.4, modern Linuxes have 4.1
@ Quite different from Borland C++ or Visual C++

@ Also available in Cygwin and DevCPP

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Basic usage of GCC

@ Compiling and linking (for programs):
gcc —O0 my_app my_app.cC

@ Running your program:
. /my_app
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Compiling programs Single-file programs
Multi-program files

Compiler flags

@ -ansi
@ —Wall

@ —-pedantic-errors

@ —g - debug symbols (GDB, DDD)
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Compiling programs Single-file programs
Multi-program files

Compiler flags

@ —-ansi
@ —Wall
@ -pedantic—-errors (no space!)
@ —g - debug symbols (GDB, DDD)
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Compiling programs Single-file programs
Multi-program files

Compiler flags

@ —-ansi
@ —Wall
@ -pedantic—-errors (no space!)
@ —g - debug symbols (GDB, DDD)

gcc —ansi -Wall -pedantic-errors
-0 mMy_prog my_prog.c
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Compiling programs Single-file programs
Multi-program files

Outline

e Compiling programs

@ Multi-program files

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiling obiject files

@ —c - no linking
@ Otherwise, same flags as before
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Compiling programs Single-file programs
Multi-program files

Compiling obiject files

@ —c - no linking
@ Otherwise, same flags as before

gcc —ansi -Wall —-pedantic-errors
-c —o my_lib.o my_lib.c
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Compiling programs Single-file programs
Multi-program files

Linking the application

@ Linking gives you a runnable application

@ We will use gcc for linking (like we did before)

@ In reality, 1d is called

@ Avoid specifying multiple . c files - compile objects instead

gcc —o my_app main.o libl.o lib2.o ...
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Compiling programs Single-file programs
Multi-program files

Common caveats

@ Circular dependencies
@ Unit testing
@ Many more!
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Outline

© Makefiles
@ Introduction
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Introduction
Makefiles Writing makefiles

Why makefiles?

@ Recompiling happens a /ot

@ -Wall -ansi -pedantic-errors —-kimchi -...
@ Recompiles only what has changed

@ Great for distributing programs
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Introduction
Makefiles Writing makefiles

Why makefiles?

@ Recompiling happens a /ot

@ -Wall -ansi -pedantic-errors —-kimchi -...
@ Recompiles only what has changed

@ Great for distributing programs

@ Sometimes required by course staff
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Introduction
Makefiles Writing makefiles

In practice

© Create your Makefile (Or makefile)
@ Run make

© Debug and fix your code

© Return to step 2
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Introduction
Makefiles Writing makefiles

Outline

© Makefiles

@ Writing makefiles

Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -0 my_prog my_prog.c
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c
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Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h
1lib2.0: 1lib2.c header2.h
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: libl.c headerl.h
1lib2.0: 1lib2.c header2.h
my_prog.o: my_prog.c headerl.h header2.h
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h
1lib2.0: 1lib2.c header2.h
my_prog.o: my_prog.c headerl.h header2.h # Has main
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h

1lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog
libl.o: 1libl.c headerl.h
lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o
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Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

libl.o: 1libl.c headerl.h

1lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o

clean:
rm —-f my_prog my_prog.o libl.o 1lib2.o
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Introduction
Makefiles Writing makefiles

Better yet. ..

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors -g
OBJECTS=my_prog.o libl.o lib2.o
HEADERS=headerl.h header2.h
all: my_prog
libl.o: libl.c $ (HEADERS)
lib2.0: 1ib2.c $ (HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:

rm —-f my_prog $(OBJECTS)
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Introduction
Makefiles Writing makefiles

Better yet. ..

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors -g
OBJECTS=my_prog.o libl.o lib2.o
HEADERS=headerl.h header2.h
all: my_prog
libl.o: libl.c $ (HEADERS)
lib2.0: 1ib2.c $ (HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:

rm —-f my_prog $(OBJECTS)
run: my_prog

./my_prog
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Introduction

Makefiles Writing makefiles

@ Many more features (recursion, automake, phony
targets. . .)

@ For C++, use CxX and CXXFLAGS
@ Built-in make support in editors
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Summary

Summary

@ Linux is not so bad (right?)

@ Compiling with the commandline - daunting, but not much
voodoo

@ Makefiles are a powerful timesaving tool

@ Outlook

e Debuggers
e Valgrind
e C without a spoon
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