Linux for CS Students

A Primer

Ohad Lutzky

Technion IIT
CS Department

November 20th, 2006

Ohad Lutzky Linux for CS Students



Structure of this meeting

@ First hour - lecture
@ Second hour - Q&A

Ohad Lutzky Linux for CS Students



Outline

o Getting around Linux
@ Your desktop environment
@ The commandline
@ Text editors

Ohad Lutzky Linux for CS Students



Outline

o Getting around Linux
@ Your desktop environment
@ The commandline
@ Text editors

9 Compiling programs

@ Single-file programs
@ Multi-program files

Ohad Lutzky Linux for CS Students



Outline

o Getting around Linux
@ Your desktop environment
@ The commandline
@ Text editors

9 Compiling programs
@ Single-file programs
@ Multi-program files

© Makefiles
@ Introduction
@ Writing makefiles

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

Outline

o Getting around Linux
@ Your desktop environment

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

“Just like Windows”
Or rather, just like the Mac

@ Icons, documents, right/double clicks
@ Various desktop environments

@ Web browsing

@ Office suite

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

Your home directory

@ Per-user

@ Often saved on the network

@ In Windows - Documents and Settings
@ Hidden .files

Ohad Lutzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Outline

0 Getting around Linux

@ The commandline

utzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting (or CSH)

Ohad Lutzky Linux for CS Students



Getting around Linux Your desktop environment

The commandline
Text editors

What do we need this for?

@ For day-to-day tasks, you don’t

@ Fast and efficient (i.e. tab completion)

@ Excellent for working with remote servers
@ Powerful shell scripting (or CSH)

@ Absolutely not DOS

Ohad Lutzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Basic usage

@ Commands we’ll be using here: 1s, cat, cd, cp, mv, rm,
echo

@ Arrows and Tab
@ SPATH

Lutzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Basic usage

@ Commands we’ll be using here: 1s, cat, cd, cp, mv, rm,
echo

@ Arrows and Tab
@ SPATH
@ Taught in the course

Lutzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

T2, SSH, etc

@ From Windows: puTTY

@ From Linux: ssh smyusername@t2.technion.ac.il
@ T2's commandline is extremely similar to Linux’s

@ Do not use telnet!

Lutzky Linux for CS Students



ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Outline

0 Getting around Linux

@ Text editors




ing around Linux )
Getting around Linu Your desktop environment

The commandline
Text editors

Who cares? / Where’s my IDE?

@ Your most important day-to-day tool
@ Important features

@ No IDEs for CSH

@ VIM and Emacs are installed on T2

Ohad Lutzky Linux for CS Students



Getting around Linux

Your desktop environment
The commandline
Text editors

@ Familiar and easy to use
@ Syntax highlighting
@ ...Dbut not much else.

Ohad Lutzky Linux for CS Students



Getting around Linux

Your desktop environment
The commandline
Text editors

@ Familiar and easy to use

@ Syntax highlighting

@ ...Dbut not much else.

@ Recommendation: Learn VIM (vimtutor) or Emacs

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Outline

e Compiling programs
@ Single-file programs

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

@ Gnu Compiler Collection

@ Modern, full-featured compiler

@ Encapsulates many language compilers and linker

@ T2 has (currently) version 3.4, modern Linuxes have 4.1
@ Quite different from Borland C++ or Visual C++

@ Also available in Cygwin and DevCPP

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Basic usage of GCC

@ Compiling and linking (for programs):
gcc —O0 my_app my_app.cC

@ Running your program:
. /my_app

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiler flags

@ -ansi
@ —Wall

@ —-pedantic-errors

@ —g - debug symbols (GDB, DDD)

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiler flags

@ —-ansi
@ —Wall
@ -pedantic—-errors (no space!)
@ —g - debug symbols (GDB, DDD)

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiler flags

@ —-ansi
@ —Wall
@ -pedantic—-errors (no space!)
@ —g - debug symbols (GDB, DDD)

gcc —ansi -Wall -pedantic-errors
-0 mMy_prog my_prog.c

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Outline

e Compiling programs

@ Multi-program files

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiling obiject files

@ —c - no linking
@ Otherwise, same flags as before

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Compiling obiject files

@ —c - no linking
@ Otherwise, same flags as before

gcc —ansi -Wall —-pedantic-errors
-c —o my_lib.o my_lib.c

Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Linking the application

@ Linking gives you a runnable application

@ We will use gcc for linking (like we did before)

@ In reality, 1d is called

@ Avoid specifying multiple . c files - compile objects instead

gcc —o my_app main.o libl.o lib2.o ...

Ohad Lutzky Linux for CS Students



Compiling programs Single-file programs
Multi-program files

Common caveats

@ Circular dependencies
@ Unit testing
@ Many more!

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Outline

© Makefiles
@ Introduction

utzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Why makefiles?

@ Recompiling happens a /ot

@ -Wall -ansi -pedantic-errors —-kimchi -...
@ Recompiles only what has changed

@ Great for distributing programs

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Why makefiles?

@ Recompiling happens a /ot

@ -Wall -ansi -pedantic-errors —-kimchi -...
@ Recompiles only what has changed

@ Great for distributing programs

@ Sometimes required by course staff

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

In practice

© Create your Makefile (Or makefile)
@ Run make

© Debug and fix your code

© Return to step 2

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Outline

© Makefiles

@ Writing makefiles

Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c
$(CC) $(CFLAGS) -0 my_prog my_prog.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c
$(CC) $(CFLAGS) -c -o my_lib.o my_lib.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A sample makefile

Or: make knows what you mean

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors

my_prog: my_prog.c

my_lib.o: my_lib.c

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h
1lib2.0: 1lib2.c header2.h

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: libl.c headerl.h
1lib2.0: 1lib2.c header2.h
my_prog.o: my_prog.c headerl.h header2.h

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h
1lib2.0: 1lib2.c header2.h
my_prog.o: my_prog.c headerl.h header2.h # Has main

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

libl.o: 1libl.c headerl.h

1lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog
libl.o: 1libl.c headerl.h
lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

A typical multi-file sample

CC=gcc
CFLAGS=-Wall -ansi -pedantic-errors -g

all: my_prog

libl.o: 1libl.c headerl.h

1lib2.0: 1lib2.c header2.h

my_prog.o: my_prog.c headerl.h header2.h # Has main
my_prog: my_prog.o libl.o 1lib2.o

clean:
rm —-f my_prog my_prog.o libl.o 1lib2.o

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Better yet. ..

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors -g
OBJECTS=my_prog.o libl.o lib2.o
HEADERS=headerl.h header2.h
all: my_prog
libl.o: libl.c $ (HEADERS)
lib2.0: 1ib2.c $ (HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:

rm —-f my_prog $(OBJECTS)

Ohad Lutzky Linux for CS Students



Introduction
Makefiles Writing makefiles

Better yet. ..

CC=gcc
CFLAGS=-Wall -ansi —-pedantic-errors -g
OBJECTS=my_prog.o libl.o lib2.o
HEADERS=headerl.h header2.h
all: my_prog
libl.o: libl.c $ (HEADERS)
lib2.0: 1ib2.c $ (HEADERS)
my_prog.o: my_prog.c $(HEADERS)
my_prog: $(OBJECTS)
clean:

rm —-f my_prog $(OBJECTS)
run: my_prog

./my_prog

Ohad Lutzky Linux for CS Students



Introduction

Makefiles Writing makefiles

@ Many more features (recursion, automake, phony
targets. . .)

@ For C++, use CxX and CXXFLAGS
@ Built-in make support in editors

Ohad Lutzky Linux for CS Students



Summary

Summary

@ Linux is not so bad (right?)

@ Compiling with the commandline - daunting, but not much
voodoo

@ Makefiles are a powerful timesaving tool

@ Outlook

e Debuggers
e Valgrind
e C without a spoon

Ohad Lutzky Linux for CS Students



	Getting around Linux
	Your desktop environment
	The commandline
	Text editors

	Compiling programs
	Single-file programs
	Multi-program files

	Makefiles
	Introduction
	Writing makefiles

	Summary

