
11

kvm:
Kernel-based Virtual Machine
for Linux



Qumranet Inc. 2

 Founded 2005

 A Delaware corporation

 Locations

 US Office – Santa Clara, 
CA

 R&D - Netanya/Poleg

 Funding

Company Overview 

Expertise in 

enterprise 

infrastructure 

(networking, storage, 

servers) and 

virtualization

http://www.sequoiacap.com/


Qumranet Inc. 3

What is virtualization?

 Simulate a computer system (processor, memory, 
I/O) in software

 Near native performance

 Fidelity: software in a virtualized system cannot detect 
it is running on a virtualized system

 Examples: IBM Mainframes, VMware, Xen HVM



Qumranet Inc. 4

Uses

 Server consolidation
 Many underutilized servers on one host

 Testing, R&D
 Virtual desktop



Qumranet Inc. 5

Virtualization basics

 Trap changes to privileged state
 Guest cannot access hardware

 Hide privileged state
 Guest cannot detect that the host is changing things behind 

its back

 Example: interrupt enable flag



Qumranet Inc. 6

x86 hardware support

 The x86 architecture is not easily virtualizable
 Can't easily hide some privileged state

 VMware approach: perform just-in-time recompilation of the 
guest operating system

 Hardware extensions from Intel (VT), AMD (AMD-V)
 Add additional operating modes for host and guest

 Support for swapping state between guest and host

 Support for hiding privileged state



Qumranet Inc. 7

kvm

 Linux kernel module exposing hardware capabilities
 Processor state virtualization: VT

 Memory virtualization: in kernel mode

 I/O virtualization: mostly in userspace

 Driver kvm.ko, shows up as /dev/kvm

 Adds a third operating mode to processes: user 
mode, kernel mode, guest mode

 Zero impact on host kernel

 Open source project: http://kvm.sourceforge.net



Qumranet Inc. 8

kvm process model

kernel

task task guest task task guest



Qumranet Inc. 9

kvm process model (cont'd)

 Guests are scheduled as regular processes

 kill(1), top(1) work as expected

 Guest physical memory is mapped into the task's 
virtual memory space



Qumranet Inc. 10

Memory virtualization

 The processor has extensive support for translating 
virtual addresses to physical addresses

 When virtualizing, we need to add an additional level 
of translation: guest physical addresses to host 
physical addresses

 Solution: shadow page tables
 Encode the double translation: guest virtual to host physical

 Need to track changes to guest translations

 Complex and expensive

 Next generation processors support multi-level 
translation in hardware



Qumranet Inc. 11

Memory virtualization (cont'd)
Guest CR3

Page
Directory

Page
Table Page

Shadow CR3

Shadow
Page

Directory

Shadow
Page
Table



Qumranet Inc. 12

kvm vs. Xen

kvm
 Part of Linux
 Linux scheduler, memory 

management
 Minimal impact
 No support for 

paravirtualiztion
 Under development

Xen
 External hypervisor
 Own scheduler, memory 

management
 Intrusive
 Supports 

paravirtualization
 Fairly mature



Qumranet Inc. 13

kvm vs VMware

kvm
 Open source
 Uses VT
 Upstart

VMware
 Closed
 Uses dynamic translation
 Entrenched



Qumranet Inc. 14

Status

 Runs Windows (32-bit), Linux (32-bit and 64-bit) 
guests

 Intel host support published, AMD host support in the 
lab

 SMP hosts, uniprocessor guests

 Acceptable performance for desktops on newer 
processors



Qumranet Inc. 15

TODO

 Improve performance

 SMP guests



Qumranet Inc. 16
16



Qumranet Inc. 17

Code path examples

 Memory access
 Memory mapped I/O
 Interrupt injection



Qumranet Inc. 18

Example: memory access

 Guest accesses an unmapped memory location
 VT traps into kernel mode
 kvm walks the guest page table, determines guest 

physical address
 kvm performs guest physical -> host physical 

translation
 kvm installs shadow page table entry containing guest 

virtual -> host physical translation
 VT restarts execution of faulting instruction



Qumranet Inc. 19

Example: memory mapped I/O

 Guest accesses device register
 VT traps into kernel mode
 kvm determines that access is to a virtualized device
 kvm feeds faulting instruction into an internal x86 

emulator to determine exact operation
 kvm exits to userspace to service the I/O
 Userspace device emulator emulates the access
 Userspace returns to kvm
 kvm returns to guest mode, after faulting instruction



Qumranet Inc. 20

Example: interrupt injection

 I/O operation completes in userspace
 Emulated device injects interrupt through kvm
 kvm sets up VT registers to inject interrupt
 Next transition to guest mode will inject a virtual 

interrupt


