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kvm:
Kernel-based Virtual Machine
for Linux
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 Founded 2005

 A Delaware corporation

 Locations

 US Office – Santa Clara, 
CA

 R&D - Netanya/Poleg

 Funding

Company Overview 

Expertise in 

enterprise 

infrastructure 

(networking, storage, 

servers) and 

virtualization

http://www.sequoiacap.com/
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What is virtualization?

 Simulate a computer system (processor, memory, 
I/O) in software

 Near native performance

 Fidelity: software in a virtualized system cannot detect 
it is running on a virtualized system

 Examples: IBM Mainframes, VMware, Xen HVM
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Uses

 Server consolidation
 Many underutilized servers on one host

 Testing, R&D
 Virtual desktop
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Virtualization basics

 Trap changes to privileged state
 Guest cannot access hardware

 Hide privileged state
 Guest cannot detect that the host is changing things behind 

its back

 Example: interrupt enable flag
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x86 hardware support

 The x86 architecture is not easily virtualizable
 Can't easily hide some privileged state

 VMware approach: perform just-in-time recompilation of the 
guest operating system

 Hardware extensions from Intel (VT), AMD (AMD-V)
 Add additional operating modes for host and guest

 Support for swapping state between guest and host

 Support for hiding privileged state
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kvm

 Linux kernel module exposing hardware capabilities
 Processor state virtualization: VT

 Memory virtualization: in kernel mode

 I/O virtualization: mostly in userspace

 Driver kvm.ko, shows up as /dev/kvm

 Adds a third operating mode to processes: user 
mode, kernel mode, guest mode

 Zero impact on host kernel

 Open source project: http://kvm.sourceforge.net
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kvm process model

kernel

task task guest task task guest
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kvm process model (cont'd)

 Guests are scheduled as regular processes

 kill(1), top(1) work as expected

 Guest physical memory is mapped into the task's 
virtual memory space
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Memory virtualization

 The processor has extensive support for translating 
virtual addresses to physical addresses

 When virtualizing, we need to add an additional level 
of translation: guest physical addresses to host 
physical addresses

 Solution: shadow page tables
 Encode the double translation: guest virtual to host physical

 Need to track changes to guest translations

 Complex and expensive

 Next generation processors support multi-level 
translation in hardware
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Memory virtualization (cont'd)
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kvm vs. Xen

kvm
 Part of Linux
 Linux scheduler, memory 

management
 Minimal impact
 No support for 

paravirtualiztion
 Under development

Xen
 External hypervisor
 Own scheduler, memory 

management
 Intrusive
 Supports 

paravirtualization
 Fairly mature
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kvm vs VMware

kvm
 Open source
 Uses VT
 Upstart

VMware
 Closed
 Uses dynamic translation
 Entrenched
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Status

 Runs Windows (32-bit), Linux (32-bit and 64-bit) 
guests

 Intel host support published, AMD host support in the 
lab

 SMP hosts, uniprocessor guests

 Acceptable performance for desktops on newer 
processors
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TODO

 Improve performance

 SMP guests
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Code path examples

 Memory access
 Memory mapped I/O
 Interrupt injection
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Example: memory access

 Guest accesses an unmapped memory location
 VT traps into kernel mode
 kvm walks the guest page table, determines guest 

physical address
 kvm performs guest physical -> host physical 

translation
 kvm installs shadow page table entry containing guest 

virtual -> host physical translation
 VT restarts execution of faulting instruction
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Example: memory mapped I/O

 Guest accesses device register
 VT traps into kernel mode
 kvm determines that access is to a virtualized device
 kvm feeds faulting instruction into an internal x86 

emulator to determine exact operation
 kvm exits to userspace to service the I/O
 Userspace device emulator emulates the access
 Userspace returns to kvm
 kvm returns to guest mode, after faulting instruction



Qumranet Inc. 20

Example: interrupt injection

 I/O operation completes in userspace
 Emulated device injects interrupt through kvm
 kvm sets up VT registers to inject interrupt
 Next transition to guest mode will inject a virtual 

interrupt


