
PCRE – Perl Compatible PCRE – Perl Compatible
Regular Expression LibraryRegular Expression Library
Ami Chayun – January 1st 2007

Version 1.1

Wouldn't it Be Nice?
int is_this_spam(const char *mail)

{

if (mail =~ /stock(s)?|vi4gra|enlarge/im)

return 1; //death to spam

else

return 0; //this can't possibly be spam

}

The Answer: PCRE
 Would you like to use Perl's regular

expression capabilities in C your
programs?

 Well, of course you would. Why else
would you be coming to this lecture?
(besides fighting if we should say regex or regexp)

 After this lecture you will become
familiar with the capabilities of the
PCRE library and what it can do for
you

Table of ContentsTable of Contents
 Short History of Regular Expression
 Why 'Perl Compatible?'
 Perl Regular Expressions Capabilities

 PCRE Overview
 PCRE C API
 Performance
 C++ API

Abbreviated History
 In the late 1960s regular expressions

jumped from theoretical mathematics to
the field of computer science

 The first applications commonly using
regular expressions were ed, grep and
later egrep

 Grep presented the * meta character, but
+ and ? Were not supported. It also
supported capturing and other meta
characters. Advanced syntax was added
with new versions of egrep

Standards
 Regular expression development was

not unified, for almost 20 years every
application had its own flavour of
regular expression.

 Tools like 'awk', 'lex' and 'sed' (and
later emacs) all supported some form
of regular expressions, but with
fundamental differences.

POSIX Regular Expressions
 An attempt to standardize the realm of

regular expressions was made in 1986
by POSIX.

 POSIX refers to two major flavors of
regular expressions:
◦ BRE (Basic Regular Expressions)
◦ ERE (Extended Regular Expressions)

 POSIX Introduces support of different
locales in both BRE and ERE

POSIX BRE
 Support dot (.), anchors (^ $), character

classes, ranges etc.
 Supports backreferences (\1 .. \9)
 Does not support alteration (|)
 Does not support the + and ?

quantifiers

POSIX ERE
 Support dot (.), anchors (^ $),

character classes, ranges etc.
 Support alteration and all the

quantifiers
 Does not support backreferences
 Supports locale-specific character

classes like \w (character in a word)
◦ Note: This was not defined in POSIX, but

rather widely implemented

Regular Expression Libraries
 C has a long history of regular

expression packages:
◦ Henry Spencer's package (first made

available at 1986 and popular until 1994)
◦ GNU C Library has a POSIX compatible

regular expression library (regex.h)
◦ John Maddock's Regex++ (Boost regex

++) packaged with the Boost library
◦ Philip Hazel's Perl 5 compatible PCRE

http://arglist.com/regex/
http://www.boost.org/libs/regex/doc/index.html
http://www.boost.org/libs/regex/doc/index.html
http://www.boost.org/libs/regex/doc/index.html
http://www.pcre.org/

Other Languages
 Java included regular expression

library in Java 1.4.0
 Microsoft VB 6 has simple regular

expression support
 Microsoft .NET infrastructure supplies

an extensive regular expression
library

 All popular script languages support
regular expressions. Noticeably in
Perl, Ruby, Python, PHP (via pcre)

Perl Compatible
 Since the release of Perl 5, it became

the de-facto standard of regular
expression syntax

 Perl support all POSIX ERE syntax,
as well as extensions introduced by
previous utilities and languages

 Perl support Unicode and non ANSI
charsets out-of-the-box

Perl Regular Expressions
 Perl's original flavor is based on the

Emacs, awk and sed regular
expression syntax

 Perl 2 included a complete rewrite of
the regular expression engine, and
evolved up to version 5

 Perl support many advanced features
of regular expressions:
 Full unicode support, unlimited number of

capturing groups, lazy quantifiers, lookaround
etc.

PCRE OverviewPCRE Overview
 The PCRE Library
 PCRE C example
 Using the ovector structure to access

captured matches
 Perl compatible options
 Unique options to PCRE

Philip Hazel's PCRE Library
 “The PCRE library is a set of functions

that implement regular expression
pattern matching using the same
syntax and semantics as Perl 5”

 PCRE was written for the Exim MTA.
Version 1.0 was released on
November, 1997

 Today PCRE is used by many high
profile open source projects:
◦ Apache web server, PHP, Postfix …

PCRE Overview (cont.)

 The package is distributed under BSD
software license

 PCRE Is available for POSIX
operating systems, Mac OSX and
Win32

 PCRE is written in C with a basic API,
and optional wrappers
◦ Most noticeably C++ and backward-

compatible POSIX regex.h API

C API Example Code
#include <stdio.h> //meat and potatoes
#include <string.h>
#include "pcre.h"

#define OVECCOUNT 30 /* should be a multiple of 3 */
int main(int argc, char* argv[])
{

pcre *re;
const char *error;
int erroffset;
int ovector[OVECCOUNT];
int rc;

Defining our parameters
char *regex = "^From: ([^@]+)@([^\r]+)";

char *data = "From:
regular.expressions@example.com\r\n";

Compiling the expression
re = pcre_compile(
regex, /* the pattern */
0, /* default options */
&error, /* for error message */
&erroffset, /* for error offset */
NULL); /* use default character table */

if (! re)
{

fprintf(stderr,
"PCRE compilation failed at expression offset
%d: %s\n", erroffset, error);

return 1;
}

Executing the match
rc = pcre_exec(
re, /* the compiled pattern */
NULL, /* no extra data - we didn't study the pattern */
data, /* the subject string */
strlen(data), /* the length of the subject */
0, /* start at offset 0 in the subject */
0, /* default options */
ovector, /* output vector for substring information */
OVECCOUNT); /* number of elements in the output
vector */

Handling match errors
if (rc < 0)
{

switch(rc)
{

case PCRE_ERROR_NOMATCH:
printf("No match found in text\n");
break;

/*
 More cases defined...

*/
default:

printf("Match error %d\n", rc);
break;

return 1;
}

}

Extracting matches
if (rc < 3)
{
 printf("Match did not catch all the groups\n");
 return 1;
}

/*ovector[0]..ovector[1] are the entire matched
string*/

char *name_start = data + ovector[2];
int name_length = ovector[3] - ovector[2];

char *domain_start = data + ovector[4];
int domain_length = ovector[5] - ovector[4];

Extracting matches
 /* Finally, print the match */

 printf("Mail from: %.*s domain: %.*s\n",

 name_length, name_start,

 domain_length, domain_start);

 return 0;

} //END main

Basic recipe

 Compile your expression with
pcre_compile

 Execute the expression with
pcre_exec

 Store matches in the ovector array

The Structure of ovector

 PCRE stores the match indices in an
array with the following format:

+--+

| Match 0 | Match 0 | Match 1 | Match 1 | ... |

| start | end | start | end | |

+--+

 The number of captured matches is
returned in the parameter rc

Ovector (cont.)
 To access group n ($1, $2, ...) you

need:

int length = ovector[2*n];

const char *start =
 ovector[2*n + 1] – ovector[2*n];

 To allow ovector capture n groups
define ovector to the size of: (n+1)*3

Compiling the Code
 To compile PCRE with GCC run:
 gcc pcredemo.c -lpcre -o pcredemo

 Under win32 link with pcre.lib or
pcre.dll

 Obtaining PCRE:
◦ From project's web site: pcre.org
◦Win32 version is distributed with

GnuWin32
◦ apt-get install libpcre3 libpcre3-dev

http://www.pcre.org/
http://gnuwin32.sourceforge.net/

Perl Capabilities Chart
PCRE option Usage Perl switch
PCRE_CASELESS case insensitive match /i

PCRE_MULTILINE multiple lines match /m

PCRE_DOTALL dot matches newlines /s

PCRE_DOLLAR_ENDONLY $ matches only at end N/A

PCRE_EXTRA strict escape parsing N/A

PCRE_EXTENDED ignore whitespaces /x

PCRE_UTF8 handles UTF8 chars built-in

PCRE_UNGREEDY reverses * and *? N/A

PCRE_NO_AUTO_CAPTURE disables matching parens N/A

More Options
PCRE option Usage
PCRE_NEWLINE_CR Set the newline char to be \r

PCRE_NEWLINE_LF Set the newline char to be \n

PCRE_NEWLINE_CRLF Set the sequence to be \r\n

PCRE_ANCHORED Match only at the first position

PCRE_NOTBOL Subject is not the beginning of a line

PCRE_NOTEOL Subject is not the beginning of a line

PCRE_NOTEMPTY An empty string is not a valid match

PCRE_NO_AUTO_CAPTURE Disable unnamed capturing parentheses
PCRE_PARTIAL Return PCRE_ERROR_PARTIAL for a
 partial match

Unique Options
PCRE option Usage
PCRE_AUTO_CALLOUT Automatically inserts callouts

 before each item (state)

DFA Options

PCRE_DFA_SHORTEST Return only the shortest match

PCRE_DFA_RESTART Restart the DFA engine after a partial match

 Function callout is a unique capability to the
PCRE package and allows the user to run an
arbitrary function on each state of the regular
expression

PerformancePerformance
 Available regular expression engine

types
 Expression 'study' optimization

The Engine
 Regular expressions implementations

are based on two major families of
algorithms:
◦ NFA (Nondeterministic Finite Automaton)
◦ DFA (Deterministic Finite Automaton)

 NFA also comes in a POSIX flavour

The Engine - NFA
 NFA works like DFS

(Depth-First-Search)
◦ Checks one possible path every time
◦ Very low memory consumption
◦ Fast
◦ Allows capturing

 NFA is the most popular software
implementation.
◦ Perl uses traditional NFA

The Engine - DFA
 DFA works like BFS

(Breadth-First-Search)
◦ Checks all candidates at the same time,

therefore can return all the partial matches
◦ Allows unification of many regular

expressions, as they can all be unified to
one big state machine
◦ High memory consumption (exponential)

 DFA is preferred when matching to a
large number of expressions
i.e: mail filters, anti-virus, IDS etc.

Alternate Engine
 PCRE also support DFA. If you wish,

PCRE can execute the PCRE search
with DFA engine with the
pcre_dfa_exec function

 This is not Perl compatible :-)

DFA Pro / Cons
 Advantages:
◦ All possible matches are found. Longest is

returned (unless PCRE_DFA_SHORTEST option
is specified)
◦ Better support for partial matching
◦ The engine doesn't backtracks

 Disadvantages:
◦ Slower
◦ No capturing parentheses and back

references

NFA Optimization - Study
 PCRE offers an option to optimize the

regular expression by running
pcre_study() on a non anchored
compiled regular expression.

 pcre_study creates a bitmap of
possible starting characters

 This should not be confused with Perl's
study, which maps the target text,
rather than the expression

Study Pro / Cons
 When should you consider to study?
◦ Unanchored expressions
◦ pcre_study supports optimizing caseless

matches (opposed to Perl study)
◦ Heavily used expression

 Remember that the time and extra
memory for study may not always be
worth it

PCRE C++ WrapperPCRE C++ Wrapper
 C++ Example with pcrecpp
 Differences in usage
 Supported options
 Compiling the code

C++ API
 One of the first contributions Google

inc. made to the open source
community was a C++ wrapper to the
PCRE library. Since then it has been
separately maintained.

 The C++ API supplies object oriented
approach to the library, and supports
std types.

C++ Example
#include <iostream>

#include <string>

#include <pcrecpp.h>

using namespace std;

Using PCRE C++
int main(void)

{

 int i;

 string s;

 pcrecpp::RE re("(\\w+):(\\d+)");

 if (re.error().length() > 0) {

 cout << “PCRE compilation failed with error: “

<< re.error() << “\n”;

}

 if (re.PartialMatch("root:1234", &s, &i))

 cout << s << " : " << i << "\n";

}

Differences of C++ Package
 Context aware, can return:

string, int, const char * etc.
In capturing parentheses.

 Supports search and replace:
◦ PartialMatch
◦ FullMatch
◦ Replace
◦ GlobalReplace

Differences (cont.)
 All memory allocated internally in the

object if const char * was passed.
 UTF8 support can be activated like so:
 pcrecpp::RE_Options options;

 options.set_utf8();

 pcrecpp::RE re(utf8_pattern, options);

More PCRE C++ Notes
 Supports Perl modifiers via the

RE_Options class:
PCRE_CASELESS case insensitive match /i

PCRE_MULTILINE multiple lines match /m

PCRE_DOTALL dot matches newlines /s

PCRE_DOLLAR_ENDONLY $ matches only at end N/A

PCRE_EXTRA strict escape parsing N/A

PCRE_EXTENDED ignore whitespaces /x
PCRE_UTF8 handles UTF8 chars built-in

PCRE_UNGREEDY reverses * and *? N/A

PCRE_NO_AUTO_CAPTURE disables matching parens N/A

 Currently does not support other PCRE
flags. (easily extendible)

Compiling Code
 In addition to the pcre library, the pcrecpp

headers and library are also required. With
GCC:
g++ -lpcrecpp test_pcre_cpp.cpp -o

test_pcre_cpp

 Under win32 link with pcrecpp.lib or
pcre.dll

Obtaining PCRE:
◦ From the project's FTP server

(under contrib dir)
◦ apt-get install libpcrecpp0

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib/

Bibliography
 Mastering Regular Expression (3rd edition)
 PCRE man page
 PCRE HTML man pages

 Ken Thompson -
Regular expression search algorithm (1986)

http://www.oreilly.com/catalog/regex3/
http://www.pcre.org/pcre.txt
http://www.ugcs.caltech.edu/manuals/libs/pcre-6.4/index.html
http://portal.acm.org/citation.cfm?id=363387&coll=ACM&dl=ACM

Thank You.

