

Building a kernel module for many
distribuitions

Rami Rosen
ramirose@gmail.com

Haifux – Lightning Talks , July 2008

mailto:ramirose@gmail.com

Building a kernel module for many
distribuitions

We want to build a kernel module for
FC4,FC5,FC6,FC7,FC8,FC9 and EL4,EL5 and

maybe more distribuitions.
If we will try to insmod a module built on FC4

to ,say, FC9, we will get an error:
insmod: error inserting 'myModule.ko': -1 Invalid

module format
In syslog , you will see:

version magic xxx should be yyy.
xxx = module vermagic; yyy = kernel vermagic

Building a kernel module for many
distribuitions

● modprobe -f or modprobe --force will not help
in this case.

Building a kernel module for many
distribuitions-contd

● Behind the scenes:
– insmod/modprobe call a system call,

sys_init_module() (kernel/module.c.)

– -f (--force) options is the same as --force-vermagic
and –force-modversion together; see man
modprobe.

● See also: include/linux/vermagic.h and:
– include/linux/version.h

– For 2.6.25 it has:

– #define LINUX_VERSION_CODE 132633

– 132633 is 20619 => a hex representation of 2.6.25

Building a kernel module for many
distribuitions-contd

● You can see the vermagic of a module by:
● modinfo -F vermagic myModule.ko

– (-F stands for field)

– 2.6.23.1-42.fc8 SMP mod_unload

– (BTW: mod_unload says that the kernel was build
with CONFIG_MODULE_UNLOAD set. Most distros
enable module unloading; when this is not the case,
running “rmmod myModule” will cause this:

– FATAL: Kernel does not have unload support.

● Another way is by :
● objdump myModule.ko --full-contents --section=.modinfo

Building a kernel module for many
distribuitions-contd

● You can also use readelf --sections

Building a kernel module for many
distribuitions-contd

● Note:
● If the kernel version is 2.6.x.y.z, then modules

 built against 2.6.x.y will load into 2.6.x.y.*
kernels.

● For example:
– A module built against 2.6.25.9-76.fc9.x86_64

(latest FC9 kernel-devel) will load into 2.6.25 kernel

Building a kernel module for many
distribuitions-contd

● Not always we have machines available on
which we have all these environments.

● Even if we have, and we build on each of them

the module, we have the overhead of

synchronization between them.

Building a kernel module for many
distribuitions-contd

● There are several solutions.
● For example, virtualization, chroot.
● Proposed solution:
● First, install the kernel-devel rpm of each distro.

– This rpm include (mostly) kernel header files.

● Find out which gcc is for each distro and install
the corresponding source rpm.

● For example:
● For FC6 we have gcc-4.1.1-30:
● Run: rpm -ivh gcc-4.1.1-30.src.rpm.

Building a kernel module for many
distribuitions-contd

● Caveat: if you are building the module for fewer
distros (two, three...) than sometimes you may
have a suitable compat-gcc pacakge ready.

● Then: rpm -bp
/usr/src/redhat/SPECS/gcc41.spec

● The gcc source code is somewhere under /usr/
src/redhat/BUILD/

● Then, you should build gcc.
● It is important to create a folder for the build.

mkdir build; cd build

Building a kernel module for many
distribuitions-contd

● ../configure --prefix=/work/tools/fc6/gcc
--enable-threads=posix –enable-languages=c

● Then make and make install.
● What is inaccurate here ?

– We better use the configuration options with which
the gcc from the selected distro was built. We can

– Get these configuration options in the spec file of
the gcc

– To be on the safe side, it is also better to build the
gcc against the corresponding binutils package.

Building a kernel module for many
distribuitions-contd

● Create a folder (let's say myFolder) which will
have your module source code and header
files. Let's say they are myModule.c and
myModule.h.

● Create subfolders, on for each distro:
– myFolder/fc4,myFolder/fc5, etc.

Building a kernel module for many
distribuitions-contd

● Create soft links for myModule.c,myModule.h in each subfolder.

● Then, create for each distro a Makefile in its corresponding
folder.

● Example for a Makefile for FC6:

obj-m := myModule.o

CC:= /work/tools/fc6/gcc/bin/gcc

KDIR:=/usr/src/kernels/2.6.18-1.2798.fc6-x86_64

PWD := $(shell pwd)

default:

$(MAKE) CC=$(CC) -C $(KDIR) SUBDIRS=$(PWD) modules

Building a kernel module for many
distribuitions-contd

● In case you need to add #ifdef in the code for
different kernel, there are two ways to do it:
– EXTRA_CFLAGS in the makefile

● For example:
● EXTRA_CFLAGS := -DKER2625
● And than , in the code, #ifdef KER2625

– Adding using LINUX_VERSION_CODE
/KERNEL_VERSION from include/linux/version.h

– #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

–

– #endif

Building a kernel module for many
distribuitions-contd

● In myFolder, create a makefile which will call
make on all subfolders:

● For example:
#Makefile

all:

cd fc4 && $(MAKE)

cd fc5 && $(MAKE)

cd fc6 && $(MAKE)

....

cd el5 && $(MAKE)

Building a kernel module for many
distribuitions-contd

● Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

