
Fortran Returns

Shimon Panfil,Ph. D.

Industrial Physics and Simulations
http://industrialphys.com/

March 6, 2010



Contents

Fortran History
Prehistory, before 1970
Ancient Times, 1970s-1980s
Medieval Period, 1980-2005
Our Times

Fortran 2003 for C programmers
Modules
Arrays
Pointers



Prehistory, before 1970

FORTRAN (Formula Translating) is the first ever created
programming language [1]. In late 1953, John W. Backus
submitted a proposal to his superiors at IBM to develop a more
practical alternative to assembly language for programming their
IBM 704 mainframe computer. The first manual for FORTRAN
appeared in October 1956, with the first FORTRAN compiler
delivered in April 1957. This was an optimizing compiler, because
customers were reluctant to use a high-level programming language
unless its compiler could generate code whose performance was
comparable to that of hand-coded assembly language.



Prehistory, before 1970

The language was widely adopted by scientists for writing
numerically intensive programs, which encouraged compiler writers
to produce compilers that could generate faster and more efficient
code. The inclusion of a complex number data type in the language
made FORTRAN especially suited to technical applications such as
electrical engineering. The increasing popularity of FORTRAN
spurred competing computer manufacturers to provide FORTRAN
compilers for their machines, so that by 1963 over 40 FORTRAN
compilers existed. For these reasons, FORTRAN is considered to
be the first widely used programming language supported across a
variety of computer architectures.



Prehistory, before 1970

New era of portable software has started. FORTRAN was a
practical solution it was not absolutely machine-independent and
has few other deficiencies. An attempt to produce more
theoretically sound and clean programming language yielded
ALGOL (Algorithmic Language) in 1958 [2]. ALGOL greatly
influenced many other languages and became the de facto way
algorithms were described in textbooks and academic works for
almost the next 30 years. It was implemented for a number of
computers but has never got as popular as FORTRAN for
professional programming. In university (the beginning of 70s) I
was taught ALGOL in basic programming course, but more
advanced courses used FORTRAN.



LISP

LISP was invented by John McCarthy in 1958 [3]. LISP was
originally created as a practical mathematical notation for
computer programs and quickly became the favored programming
language for artificial intelligence (AI) research. As one of the
earliest programming languages, LISP pioneered many ideas in
computer science, including tree data structures, automatic storage
management, dynamic typing, and the self-hosting compiler. LISP
was first implemented by Steve Russell on an IBM 704 computer.
Russell had read McCarthy’s paper, and realized (to McCarthy’s
surprise!) that the LISP eval function could be implemented in
machine code.



LISP vs. FORTRAN

Note the difference: FORTRAN was invented to make practical
programming more efficient, LISP was implemented on the same
machine at the same time to the surprise of its author.1

1Cf. Dijkstra: ”Computer science is no more about computers than
astronomy is about telescopes.” The design and deployment of computers and
computer systems is generally considered the province of disciplines other than
computer science [5].



COBOL

To complete the description I must mention COBOL (Common
Bisness Oriented Language) [4] which appeared in 1959 and
became the most popular programming language. In 1997, the
Gartner Group reported that 80% of the world’s business ran on
COBOL with over 200 billion lines of code in existence and with an
estimated 5 billion lines of new code annually.



Prehistory, before 1970

So prehistoric programmers were divided into three groups:

Business The largest group using COBOL;

Numerical Scientists and engineers using FORTRAN for
computation and sometimes ALGOL for publications;

Theoretics Small but fast growing and active group using all
other languages.

I shall discuss only numerical programming below, I myself belong
to this group and have no professional knowledge in other kinds of
programming.



Prehistory, before 1970

Current state of FORTRAN was defined by the first standard
became known as FORTRAN 66 (although many continued to
refer to it as FORTRAN IV, the language upon which the standard
was largely based). FORTRAN 66 effectively became the first
”industry-standard” version of FORTRAN.
Note that operating systems are not invented yet. FORTRAN 66 is
not merely compiler but ”Programming system” comprising all
means needed to use computer.



Ancient Times, 1970s-1980s

After the release of the FORTRAN 66 standard, compiler vendors
introduced a number of extensions to ”Standard Fortran”,
prompting ANSI in 1969 to begin work on revising the 1966
standard. Final drafts of this revised standard circulated in 1977,
leading to formal approval of the new FORTRAN standard in April
1978. The new standard, known as FORTRAN 77, added a
number of significant features to address many of the shortcomings
of FORTRAN 66.



Ancient Times, 1970s-1980s

In this revision of the standard, a number of features were removed
or altered in a manner that might invalidate previously
standard-conforming programs. (Removal was the only allowable
alternative to at that time, since the concept of ”deprecation” was
not yet available for ANSI standards.)
Operating systems came to exist which take many functions from
”programming systems” leaving them merely compiler and
libraries. New programming languages appear, the most notable
were UNIX and C. FORTRAN 77 became old fashioned but still
preferred language for numerical programs ([6],[7]).



Medieval Period, 1980-2005

Mini-computers, micro-computers, personal computers,
multimedia, internet, Windows . . . ! Intensive growth of
non-numerical applications on one hand and development of
”user-friendly” numerical software like Matlab, Mathematica,
Maple on the other hand have overshadowed numerical
programming. (Scientific or numerical problem? It is Matlab!)
The numerical programming community is still active but bound to
large computer centers in industry, national laboratories and
universities. High Performance Computer vendors provide efficient
Fortran compilers for their machines and people working on new
Fortran standards [8]. In particular Fortran 90 standard includes all
features necessary for modern descent language:



Fortran 90

I Free-form source input, also with lowercase Fortran keywords

I Identifiers up to 31 characters in length

I Inline comments

I Ability to operate on arrays (or array sections) as a whole,
thus greatly simplifying math and engineering computations.

I RECURSIVE procedures

I Modules, to group related procedures and data together, and
make them available to other program units, including the
capability to limit the accessibility to only specific parts of the
module.

I A vastly improved argument-passing mechanism, allowing
interfaces to be checked at compile time

I User-written interfaces for generic procedures

I Operator overloading

I Derived/abstract data types



Fortran 90

I New data type declaration syntax, to specify the data type
and other attributes of variables

I Dynamic memory allocation by means of the ALLOCATABLE
attribute and the ALLOCATE and DEALLOCATE statements

I POINTER attribute, pointer assignment, and NULLIFY
statement to facilitate the creation and manipulation of
dynamic data structures

I Structured looping constructs, with an END DO statement for
loop termination, and EXIT and CYCLE statements for
”breaking out” of normal DO loop iterations in an orderly way

I SELECT . . . CASE construct for multi-way selection

I Portable specification of numerical precision under the user’s
control 2

I New and enhanced intrinsic procedures.

2Absolutely senseless and misleading feature



Medieval Period, 1980-2005

Fortran 95 was a minor revision, mostly to resolve some
outstanding issues from the Fortran 90 standard. Nevertheless,
Fortran 95 also added a number of extensions, notably from the
High Performance Fortran specification:

I FORALL and nested WHERE constructs to aid vectorization

I User-defined PURE and ELEMENTAL procedures

I Pointer initialization and structure default initialization.

A number of intrinsic functions were extended (for example a dim
argument was added to the maxloc intrinsic).
Several features noted in Fortran 90 to be deprecated were
removed from Fortran 95.



Medieval Period, 1980-2005

F (programming language)[9] was designed to be a clean subset of
Fortran 95 that attempted to remove the redundant, unstructured,
and deprecated features of Fortran, such as the EQUIVALENCE
statement. F retains the array features added in Fortran 90, and
removes control statements that were obsoleted by structured
programming constructs added to both Fortran 77 and Fortran 90.
F is described by its creators as ”a compiled, structured, array
programming language especially well suited to education and
scientific computing.”



Medieval Period, 1980-2005

However these attempts have (how to put it mildly?) only
restricted success. Why? Because of a number of reasons:

I Most of most of modern computer professionals including
lecturers and book authors in programming know nothing
about numerical programming and their recommendations on
programming style and methodology are in many cases
counterproductive when applied to this field;

I Modern programming languages like C, C++, Java,. . . were
designed primarily for non-numerical applications and are not
efficient when applied to numerical programming;



Medieval Period, 1980-2005

I Battle tested legacy code is written in old (FORTRAN 77
mainly) standard, so modern Fortran is not enough, one must
learn also old one, but in this case why bother to new 2
languages, so even newcomers are tempted to stay with
FORTRAN 77;

I Even modern Fortran is at odds with operating systems;

I There is no open source modern Fortran compiler for Linux,
which prevents use of modern Fortran on Linux clusters (well
known poor man supercomputer).



Our Times

New standard Fortran 2003 adds the following features:

I Derived type enhancements

I Object-oriented programming support: type extension and
inheritance, polymorphism, dynamic type allocation, and
type-bound procedures.

I Data manipulation enhancements: VOLATILE attribute,
pointer enhancements, extended initialization expressions, and
enhanced intrinsic procedures.

I Input/output enhancements: asynchronous transfer, stream
access ...

I Support for IEEE floating-point arithmetic and floating point
exception handling

I Interoperability with the C programming language.

I Enhanced integration with the host operating system



Our Times

Efforts are underway to develop a revision to Fortran 2003,
tentatively called Fortran 2008. As with Fortran 95, this is
intended to be a minor upgrade, incorporating clarifications and
corrections to Fortran 2003.
However the most important development is that Gnu Compiler
Collection now includes Fortran 2003! Before 2005, gcc included
g77, which implements FORTRAN 77 standard with some
extensions. Development of the replacement was started in 2000
(g95 project [10]). In 2003 gfortran [11] forked from g95 and
became a part of gcc from version 4.0. It includes support for the
Fortran 95 language and is compatible with most language
extensions supported by g77, allowing it to serve as a drop-in
replacement in many cases. Parts of Fortran 2003 and Fortran
2008 have also been implemented. A number of commercial
compilers for Windows and Linux also came to exist.



Modern Fortran

Modern Fortran standard is typical ”designed by committee”3

product. The defining characteristics of ”design by committee” are
needless complexity, internal inconsistency, logical flaws, banality,
and the lack of a unifying vision [12].
Relation between FORTRAN 77 and Fortran 2003 resembles that
between C and C++. Both C and FORTRAN 77 are small and
easy to learn (though both have some strange features historically
motivated) while both C++ and Fortran 2003 are large and
bloated (however they improved their predecessors in a way).
Specifically the most important improvement that C++ makes
over C — that it made many more jobs for programmers is beyond
the scope of the article, and second one — double slash comment
was present in C as gcc extension for years.

3”A camel is a horse designed by committee”



Modern Fortran improvements

Fortran 2003 improvements are:

1. Dynamic memory allocation;

2. Pointers (different form C pointers!);

3. C and OS interoperability;

4. derived types (similar to C-structures);

5. modules;

6. recursive procedures;

7. whole array operations.



Modern Fortran deprovement

The most essential deprovement is kind parameter for real
numbers: instead of usual single and double precision, modern
Fortran allows you to define formally real(kind) to get the accuracy
and range as you want. ”Portable specification of numerical
precision under the user’s control” as it is described. However this
is misleading because system will silently replace your definition by
standard one or return error if none of standard types: 4 byte float,
8 byte double, 10 byte (x86-64) or 16 byte long double — can be
used.



Fortran 2003 for C programmers

Most of modern Fortran constructions which may look strange for
FORTRAN 77 programmers are quite natural for C-programmers
(e.g. using pointers and structures for building liked lists etc),
though care is needed due to some differences (see Fortran
language description e.g. [13],[14], [15] and [16]). For example
though it may seem strange for C programmer, this program
works. Explanation is that every initialized variable gets save
attribute automatically.



program saveprog

call s()

call s()

call s()

contains

subroutine s()

integer::count=0

count=count+1

print *,"execution",count

end subroutine s

end program saveprog



Fortran 2003 for C programmers

Below I will describe few modern Fortran features which are most
useful in filling the gap between FORTRAN 77 tradition of
scientific programming and modern languages and computers.



Modules

Modules allow to keep together data and functions logically
connected. Fortran modules combine C include files with
precompiled libraries. Actually modules are the preferred way to
build libraries (not only in Fortran). Let us look at the example —
well known random number generator:



Modules

module marsaglia

implicit none

private

public :: kiss, kisset

INTEGER :: x=123456789, y=362436069, z=521288629, w=916191069

contains

FUNCTION kiss ()

integer :: kiss

x = 69069 * x + 1327217885

y = m (m (m (y, 13), - 17), 5)

z = 18000 * iand (z, 65535) + ishft (z, - 16)

w = 30903 * iand (w, 65535) + ishft (w, - 16)

kiss = x + y + ishft (z, 16) + w



Modules

contains

function m(k, n)

integer :: m, k, n

m = ieor (k, ishft (k, n) )

end function m

END FUNCTION kiss

function kisset (ix, iy, iz, iw)

integer :: kisset, ix, iy, iz, iw

x = ix

y = iy

z = iz

w = iw

kisset = 1

end function kisset

end module marsaglia



Modules

The program or another model should issue ”use” statement, e.g.

PROGRAM example

use marsaglia

PRINT *, kiss ()

PRINT *, kisset (1, 2, 3, 4)

PRINT *, kiss ()

END PROGRAM example

Actually there is much more to say about the modules (you need
not use all the members of module, you can rename members etc.)
however I hope that this example demonstrates the way of gradual
rewriting and improving of legacy code. You start from modules
which simply call old functions, and then add members which
improve the old ones.



Arrays

Arrays in modern Fortran are first class citizens and they are
multidimensional (up to 7) as in FORTRAN 77, but they also can
be dynamically allocated as in C. Note that allocated arrays are
not pointers.



program mm3

integer :: n,cac,i,j,k

real,allocatable, dimension(:,:) :: a,b,c1,c2

CHARACTER(len=32) :: arg

real::start_time,stop_time

real, parameter:: eps=1.0e-15

cac=command_argument_count()

if(cac/=1) then

print *,"need 1 argument: dimension"

stop

end if

CALL get_command_argument(1, arg)

read (arg,*) n

print *,"dimension=",n

call cpu_time(start_time)

allocate(a(n,n),b(n,n),c1(n,n),c2(n,n))



call random_seed()

call random_number(a)

call random_number(b)

call cpu_time(stop_time)

print *,"matrix preparation",stop_time-start_time,"s"

call cpu_time(start_time)

c1=matmul(a,b)

call cpu_time(stop_time)

print *,"matmul",stop_time-start_time,"s"

call cpu_time(start_time)

c2=0.0



do i=1,n

do j=1,n

do k=1,n

c2(i,j)=c2(i,j)+a(i,k)*b(k,j)

end do

end do

end do

call cpu_time(stop_time)

print *,"loop ijk",stop_time-start_time,"s"

if(any(abs(c1-c2)>eps)) then

print *,"different values, stop"

stop

end if

end program mm3



Output of that program shows clearly that good algorithm (in this
case proper order of loops) is much more important than compiler
optimization:

dimension= 2000

matrix preparation 0.16998800000000000 s

matmul 13.462455000000000 s

loop ijk 114.15922400000001 s

loop ikj 280.43838099999999 s

loop jik 116.78571899999997 s

loop jki 15.608983000000080 s

loop kji 22.701852999999915 s

loop kij 280.77169299999991 s



Pointers

The amount of senseless discussions about pointers can be
compared only with that about goto 4. The sentence like ”Pointers
are dangerous . . . ” have no more content than ”Use of integers is
extremely dangerous, while real numbers mostly obey the rules of
mathematics, integers do not:1/2 ∗ 2 = 0 use integers only when
you absolutely need to!” or ”Use of real numbers is extremely
dangerous, they do not obey rules of mathematics:

pow(10.0, 300) − pow(10.0, 300) + 1 = 1.0

while
pow(10.0, 300) + 1 − pow(10.0, 300) = 0.0

use real numbers only when you absolutely need to!”.

4Compare ”Letter O considered harmful” [1]



Pointers

Actually neither pointers nor goto is evil. Unreasonable usage of
any construction lead to poorly written programs and so does
unreasonable prohibition. Pointers in Fortran are not merely
addresses, they contain plenty of information about the object they
point to. There is no pointer arithmetics. One can use them for
building lists, trees and all that exactly as in C. However the main
convenience of using pointers is demonstrated by the example — it
is clear and compact representation of expressions, which helps to
write complicated equations without errors.



program heat_transfer

implicit none

integer ::m,n,c

CHARACTER(len=32) :: arg

real ::coeff

real, allocatable, dimension(:,:), target :: plate

real, allocatable, dimension(:,:) :: temp

real, pointer, dimension(:,:) :: north, east, &

south, west, inside

real, parameter :: tolerance =1.0e-4

real :: diff

integer ::j,niter

c=command_argument_count()

if(c/=2) then

print *,"need 2 arguments"

stop

end if



CALL get_command_argument(1, arg)

read (arg,’(I10)’) m

CALL get_command_argument(2, arg)

read (arg,’(I10)’) n

allocate(plate(m,n))

allocate(temp(m-2,n-2))

!initial conditions

plate=0.0

!boundary conditions

plate(1:m,1)=1.0

coeff=1.0/n

plate(1,1:n)=[(coeff*j,j=n,1,-1)]

inside=>plate(2:m-1,2:n-1)

north=>plate(1:m-2,2:n-1)

south=>plate(3:m,2:n-1)

east=>plate(2:m-1,1:n-2)

west=>plate(2:m-1,3:n)



niter=0

do

temp=0.25*(north+east+south+west)

diff=maxval(abs(temp-inside))

niter=niter+1

inside=temp

if(diff<tolerance) then

exit

endif

end do

print *,plate(m/2,:)

end program heat_transfer



References

http://en.wikipedia.org/wiki/Fortran

http://en.wikipedia.org/wiki/ALGOL

http://en.wikipedia.org/wiki/Lisp (programming language)

http://en.wikipedia.org/wiki/COBOL

http://en.wikipedia.org/wiki/Computer science

M. Kupferschmid. Classical Fortran. Marcel Dekker, 2002

Clive G. Page. Professional Programmer’s Guide to Fortran77, 2005

T. M. R. Ellis, Ivor R. Philips, and Thomas M. Lahey. Fortran 90
programming. Addison-Wesley, 1994

T. M. R. Ellis and Ivor R. Philips. Programming in F.
Addison-Wesley, 1998

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/ALGOL
http://en.wikipedia.org/wiki/Lisp_(programming_language)
http://en.wikipedia.org/wiki/COBOL
http://en.wikipedia.org/wiki/Computer_science


References

http://www.g95.org/

http://www.gfortran.org/

http://en.wikipedia.org/wiki/Design by committee

Stephen J. Chapman Fortran 95/2003 for Scientists and Engineers.
McGraw-Hill, 2007

Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson,
Richard E. Maine, Jeanne T. Martin, Brian T. Smith. The Fortran
2003 Handbook, Springer 2009

Walter S. Brainerd. Guide to Fortran 2003 Programming. Springer
2009

Ian Chivers, Jane Sleightholme. Introduction to Programming with
Fortran. Springer 2006

http://www.g95.org/
http://www.gfortran.org/
http://en.wikipedia.org/wiki/Design_by_committee

	Fortran History
	Prehistory, before 1970
	Ancient Times, 1970s-1980s
	Medieval Period, 1980-2005
	Our Times

	Fortran 2003 for C programmers
	Modules
	Arrays
	Pointers


