
COMPUTERCOMPUTERCOMPUTERCOMPUTER

SIMULATIONSSIMULATIONSSIMULATIONSSIMULATIONS

Important for research…

But also really fun



Case Study:

CONWAYCONWAYCONWAYCONWAY’’’’S GAME S GAME S GAME S GAME 

OF LIFEOF LIFEOF LIFEOF LIFE



Pythonic Platform for 

computer simulations

GARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIMGARLICSIM



Scientist exploresScientist exploresScientist exploresScientist explores

a world...a world...a world...a world...

http://www.flickr.com/photos/posk/3528783593/



Comes up with a model Comes up with a model Comes up with a model Comes up with a model 

for that worldfor that worldfor that worldfor that world

The scientist isn’t sure at all if the 
model fits the real world. Maybe it fits 

the real world only in some situations?



A computer simulation can A computer simulation can A computer simulation can A computer simulation can 

show a world governed by show a world governed by show a world governed by show a world governed by 

the modelthe modelthe modelthe model

The scientist can compare the results 
of his simulations to the real world, 

and know whether his model is good.



And after he discovers a model that 

works, he can use computer 
simulations to make experiments in 

that world.



Thinking up a

model

Running a

Simulation
of the model

This should be a simple 

and straightforward 

step, right?



ItItItIt’’’’s not!s not!s not!s not!
http://www.flickr.com/photos/theyoungthousands/2482389516/



Maybe you can write a 

quick-n-dirty simulation 

easily enough…

But every time you’ll want 

to change something, you’ll 

have to do a lot of work.



A scientist who wants to work efficiently with 

simulations needs a simulations framework in 

which he can easily:

• Make experiments

• Measure their results

• Make changes in the simulation world

• Tweak the world laws

• And more...



Thinking up a

model

Running a

Simulation
of the model

GarlicSim’s goal: 

To make this 

process easy, 

smooth and fast



To make a framework for simulations, 
one must answer the question:

What do all simulations 

have in common?



“Life”

simulation

Physics

simulation

Stock market 

simulation

These are some examples of 

different kinds of simulation. 
What do these simulations 

have in common? 



“Life”

simulation

Physics

simulation

Stock market 

simulation

Every simulation has:

1. A concept of a world state
and

2. A step function.



“Life”

simulation

Physics

simulation

Stock market 

simulation

World state:
A description of a frozen moment in 
time in the simulation. Contains all 

the information there is about the 
world at that single point in time.



“Life”

simulation

Physics

simulation

Stock market 

simulation

World state:
2-dimensional 
array of cells, 
saying about 
each cell 
whether it’s 
dead or alive.

World state:
The position, 
velocity, 
acceleration, mass 
etc. for each body 
in the system.

World state:
The price of 
every stock, the 
amount of money 
and stock that 
every trader 
owns, etc.



“Life”

simulation

Physics

simulation

Stock market 

simulation

Step function:
A function that takes a world state, 
and outputs the next world state that 

follows it in time. This is where you 
put your “world laws”.



“Life”

simulation

Physics

simulation

Stock market 

simulation

Step function:

Count the live 
neighbors for 
every cell, if 
it’s 2, the cell 
will be alive, if 
it’s 3... etc.

Step function:

Calculate the 
sum of forces on 
each body, use 
F=ma to get 
acceleration, use 
that to estimate 

position after ∆t.

Step function:

For every trader, 
calculate utility of 
buying/selling 
every stock, decide 
which stocks he 
will buy, transfer 
money/stocks 
accordingly.



Once you have a state and a step function, 

you’re set; You can start crunching the 

timeline of your simulation.



You generate the first state.

Then you put it in the step function, and 

get the next state.

Then you put that state in the step function, 

and you’re building your timeline.



garlicsim_wx
GarlicSim’s graphical interface.

• Is awesome.

• Written with wxPython.

• Completely optional; You’re free to just 

import garlicsim instead.

• Cross-platform: Windows/Mac/Linux.



What is a “time tree”?

A time tree is a generalization of a timeline.

The difference: A time tree can be forked.



Why would you want to 

fork your time tree?
Usage 1: To ask, how could things have happened 
differently?
(Relevant only in non-deterministic simulations.)



Why would you want to 

fork your time tree?
Usage 2: To ask, how could things have happened 
differently, if the world laws were different?
(Giving different arguments to the step function.)



These 2 usages were both examples of a 

fork by crunching: Making a fork in the 

time tree by telling GarlicSim to recalculate 

from a given state.



Usage number 3 is fork by editing.

You take this state,

Modify it,

Put it here,

And see how the simulation evolves from 

there.



What is a simpack?

A simpack is the type of the simulation.

The simpack has all the code for the 
states and the step function.



A simpack is a package of code;

A simulation, which is also called a 
project, is an object created using the 

simpack.





There is an API for Cruncher types; 

You can write new kinds of crunchers 

and use them in your simulation.



Getting started with GarlicSim

• Go to the website: http://garlicsim.org

• Download and install. (No compiling!)

• Do tutorial 1, in which you’ll run a 

simulation.

• Do tutorial 2, in which you’ll write your 

first simpack.



Getting started with GarlicSim

If you have any questions or feedback, mail 
me: cool-rr@cool-rr.com or the mailing 

list: garlicsim@librelist.org



And please, give me feedback.

Every time you give me feedback, an angel 

gets a pair of wings.



Have fun 

simulating!


