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Security Threats in the Internet 

 Public WiFi without encryption 

• Easy target that requires almost no effort 

 

 Deep packet inspection by governments 

• Used for censorship  

• In the name of national security 

 

 NebuAd’s targeted advertisement 

• Modify user’s Web traffic in the middle 
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Secure Sockets Layer (SSL) 

 A de-facto standard for secure communication 

• Authentication, Confidentiality, Content integrity 
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SSL Deployment Status 

 Most of Web-sites are not SSL-protected 

• Less than 0.5%  

• [NETCRAFT Survey Jan ‘09] 

 

 Why is SSL not ubiquitous? 

• Small sites: lack of recognition, manageability, etc. 

• Large sites: cost 

• SSL requires lots of computation power 
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SSL Computation Overhead 

 Performance overhead (HTTPS vs. HTTP) 

• Connection setup 

 

• Data transfer 

 

 Good privacy is expensive 

• More servers  

• H/W SSL accelerators 

 

 Our suggestion:  

• Offload SSL computation to GPU 
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 SSL-accelerator leveraging GPU 

• High-performance 

• Cost-effective 

 

 SSL reverse proxy 

• No modification on existing servers 

SSLShader 
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SSLShader 
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POP3 Server 

Plain TCP SSL-encrypted session 



Our Contributions 

 GPU cryptography optimization 

• The fastest RSA on GPU 

• Superior to high-end hardware accelerators 

• Low latency 

 

 SSLShader 

• Complete system exploiting GPU for SSL processing 

• Batch processing 

• Pipelining 

• Opportunistic offloading 

• Scaling with multiple cores and NUMA nodes 
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CRYPTOGRAPHIC PROCESSING 

WITH GPU 
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How GPU Differs From CPU? 

Intel Xeon 5650 CPU:   

6 cores 

NVIDIA GTX580 GPU:   

512 cores 

Control 

ALU 

ALU 

ALU 

ALU 

ALU ALU 

Cache 

ALU 
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62×109      870×109 < 
Instructions / sec 

Core 

Cache 

http://i.haymarket.net.au/News/NVIDIA_Fermi_GTX480_Die_Shot.jpg


void VecAdd( 

int *A, int *B, int *C, int N) 

{ 

    //iterate over N elements 

    for(int i = 0; i < N; i++) 

        C[i] = A[i] + B[i] 

} 

 

VecAdd(A, B, C, N); 

 

__global__ void VecAdd( 

int *A, int *B, int *C) 

{ 

    int i = threadIdx.x; 

    C[i] = A[i] + B[i] 

} 

 

//Launch N threads 

VecAdd<<<1, N>>>(A, B, C); 

 

Single Instruction Multiple Threads (SIMT) 
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GPU code CPU code 

Example code: vector addition (C = A + B) 

1/3지점 8분 10초 



Parallelism in SSL Processing 
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Client 1 

Client 2 

Client N 1. Independent Sessions 

SSL Record SSL Record SSL Record 2. Independent SSL Record 

3. Parallelism in Cryptographic Operations 

SSLShader 



Our GPU Implementation 

 Choices of cipher-suite 

 

 

 

 

 

 Optimization of GPU algorithms 
• Exploiting massive parallel processing 

• Parallelization of algorithms 

• Batch processing 

• Data copy overhead is significant 

• Concurrent copy and execution 
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앞에랑 매핑이 되게-_- 
그림을 가져와서 매핑이 되게 하는게 좋을듯 

Client Server 

Encryption: AES  
Message Authentication: SHA1 

Key exchange: RSA 



Basic RSA Operations 

 M: plain-text,  C: cipher-text 

 (e, n): public key, (d, n): private key 

 

 Encryption: 

C = Me mod n 

 

 Decryption: 

M = Cd mod n 
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1024/2048 bits integer (300 ~ 600 digits)  

Small number: 3, 17, 65537 

Decryption at the server side is the bottleneck 

Exponentiation  many multiplications 

Server-side 

Server 

Client 



Breakdown of Large Integer Multiplication 
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Schoolbook  
multiplication 
 

649 
X    627 
--------- 

63 
280 
4200 
180 
800 

12000 
5400 
32000 

+ 360000 
--------- 

406923 

Accumulation is difficult to parallelize due to 
 

 “overlapping digits” 
 

“carry propagation” 

3 x 3 = 9 multiplications 
9 addition of 6-digits integers 



O(s) Parallel Multiplications 
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Example of  
649 x 627 = 406,923 

2s steps 

1 or 2 steps 
(s – 1 worst case) 

s = # of words in a large integer 
(E.g., 1024-bits = 16 x 64 bits word) 



More Optimizations on RSA 

 Common optimizations for RSA 
• Chinese Remainder Theorem (CRT) 
• Montgomery Multiplication 
• Constant Length Non-zero Window (CLNW) 

 Parallelization of serial algorithms 
• Faster Calculation of M×n 
• Interleaving of T + M×n 
• Mixed-Radix Conversion Offloading 

 GPU specific optimizations 
• Warp Utilization 
• Loop Unrolling 
• Elimination of Divergence 
• Avoiding Bank Conflicts 
• Instruction-Level Optimization 
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4054 6620 13281 9891 10146 6627 21041 
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(4) 
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(8) Instruction-level 

Optimization CLNW (9) Post-exponentiation offloading 

Read our paper for details  



Parallelism in SSL Processing 
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Client 1 

Client 2 

Client N 1. Independent Sessions 

SSL Record SSL Record SSL Record 2. Independent SSL Record 

3. Parallelism in Cryptographic Operations 

SSLShader 

Batch Processing 



GTX580 Throughput w/o Batching 
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Difference: ratio of computation to copy 

Batch size: 32~4096 depending on the algorithm 



Copy Overhead in GPU Cryptography 

 GPU processing works by 

• Data copy: CPU  GPU 

• Execution in GPU  

• Data copy: GPU -> CPU 
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AES-ENC 
(Gbps) 

AES-DEC 
(Gbps) 

HMAC-SHA1 
(Gbps) 

GTX580 w/ copy 8.8 10 31 

GTX580 no copy 21.8 33 124 
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Hiding Copy Overhead 
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Synchronous Execution 

Pipelining 

Processing time : 3t 

t 

Amortized processing time : t 

… 

… 

… 

Data copy: CPU -> GPU 

Execution in GPU 

Data copy: GPU -> CPU 

Data copy: CPU -> GPU 

Execution in GPU 

Data copy: GPU -> CPU 
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↑ 36% 
↑ 36% 

↑ 51% w/o copy 

synchronous 

pipelining 

9x 9x 
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Summary of GPU Cryptography 

 Performance gain from GTX580 

• GPU performs as fast as 9 ~ 28 CPU cores  

• Superior to high-end hardware accelerators 

 

 

 

 

 Lessons 
• Batch processing is essential to fully utilize a GPU 

• AES and SHA1 are bottlenecked by data copy 
• PCIe 3.0 

• Integrated GPU and CPU 
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RSA-1024 
(ops/sec) 

AES-ENC 
(Gbps) 

AES-DEC 
(Gbps) 

SHA1 
(Gbps) 

GTX580 91.9K 11.5 12.5 47.1 

CPU core 3.3K 1.3 1.3 3.3 

16분 30초 



BUILDING SSL-PROXY THAT  

LEVERAGES GPU 
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SSLShader Design Goals 

 Use existing application without modification 

• SSL reverse proxy 

 

 Effectively leverage GPU 

• Batching cryptographic operations 

• Load balancing between CPU and GPU 

 

 Scale performance with architecture evolution 

• Multi-core CPUs 

• Multiple NUMA nodes 
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Batching Crypto Operations 

 Network workloads vary over time 
• Waiting for fixed batch size doesn’t work 
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Output 
queue 

GPU 

Input 
queue 

CPU 

GPU 

SSL 
Stack 

 Batch size is dynamically adjusted to queue length 

 



Balancing Load Between CPU and GPU 

 For small batch, CPU is faster than GPU 
• Opportunistic offloading  
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Output 
queue 

GPU 

Input 
queue 

CPU processing 

GPU processing 
when input queue length > threshold 

GPU 
queue 

CPU 

Cryptographic operation Minimum Maximum 

RSA (1024-bit) 16 512 

AES Decryption 32  2048 

AES Encryption 128 2048 

HMAC-SHA1 128 2048 

Input queue length > threshold 



Scaling with Multiple Cores 
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 Per-core worker threads 
• Network I/O, cryptographic operation 

 Sharing a GPU with multiple cores 
• More parallelism with larger batch size 

Output 
queues 

GPU 

CPU 

CPU 

CPU 

Input 
queues GPU 

queue 
CPU 

GPU 

Core0 

Core1 

Core2 



Scaling with NUMA systems 

 A process = worker threads + a GPU thread 

• Separate process per NUMA node 

• Minimizes data sharing across NUMA nodes 
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Evaluation 

 Experimental configurations 
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Model Spec Qty 

CPU Intel X5650 2.66Ghz x 6 croes 2 

GPU NVIDIA GTX580 1.5Ghz x 512 cores 2 

NIC Intel X520-DA2 10GbE x 2 2 

SSLShader+ 
Lighttpd 

8 Clients 

4x 10GbE 

…
 

Server                Server 

Lighttpd 

SSLShader 

Lighttpd 

OpenSSL 

HTTP 

Clients 

GPU 

Clients 

HTTPS HTTPS 

Server  
Specification 



Evaluation Metrics 

 HTTPS connection handling performance 

• Use small content size 

• Stress on RSA computation 

 

 Latency distribution at different loads 

• Test opportunistic offloading 

 

 Data transfer rate at various content size 
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HTTPS Connection Rate 
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CPU Usage Breakdown (RSA 1024) 
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Latency at Light Load 
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Latency at Heavy Load 
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Lower latency and higher throughput at heavy load 
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Data Transfer Performance 
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Typical web content size is under 100KB 

SSLShader: 13 Gbps  



CONCLUSIONS 
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Summary 

 Cryptographic algorithms in GPU 

• Fast RSA, AES, and SHA1 

• Superior to high-end hardware accelerators 

 

 SSLShader 

• Transparent integration 

• Effective utilization of GPU for SSL processing 

• Up to 6x connections / sec 

• 13 Gbps throughput 
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Linux network stack performance 

Copy overhead 



QUESTIONS? 

 

THANK YOU! 

 

For more details 

https://shader.kaist.edu/sslshader 
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http://shader.kaist.edu/sslshader

