
SSLShader: Cheap SSL Acceleration with

Commodity Processors

Keon Jang+, Sangjin Han+, Seungyeop Han*,

Sue Moon+, and KyoungSoo Park+

KAIST+ and University of Washington*

1

Security of Paper Submission Websites

2

Network and Distributed System Security Symposium

Security Threats in the Internet

 Public WiFi without encryption

• Easy target that requires almost no effort

 Deep packet inspection by governments

• Used for censorship

• In the name of national security

 NebuAd’s targeted advertisement

• Modify user’s Web traffic in the middle

3

Secure Sockets Layer (SSL)

 A de-facto standard for secure communication

• Authentication, Confidentiality, Content integrity

4

Client Server
TCP handshake

Encrypted data

Key exchange using
public key algorithm

(e.g., RSA) Server
identification

SSL Deployment Status

 Most of Web-sites are not SSL-protected

• Less than 0.5%

• [NETCRAFT Survey Jan ‘09]

 Why is SSL not ubiquitous?

• Small sites: lack of recognition, manageability, etc.

• Large sites: cost

• SSL requires lots of computation power

5

SSL Computation Overhead

 Performance overhead (HTTPS vs. HTTP)

• Connection setup

• Data transfer

 Good privacy is expensive

• More servers

• H/W SSL accelerators

 Our suggestion:

• Offload SSL computation to GPU

6

22x

50x

 SSL-accelerator leveraging GPU

• High-performance

• Cost-effective

 SSL reverse proxy

• No modification on existing servers

SSLShader

7

SSLShader

Web Server

SMTP Server

POP3 Server

Plain TCP SSL-encrypted session

Our Contributions

 GPU cryptography optimization

• The fastest RSA on GPU

• Superior to high-end hardware accelerators

• Low latency

 SSLShader

• Complete system exploiting GPU for SSL processing

• Batch processing

• Pipelining

• Opportunistic offloading

• Scaling with multiple cores and NUMA nodes

8

CRYPTOGRAPHIC PROCESSING

WITH GPU

9

How GPU Differs From CPU?

Intel Xeon 5650 CPU:

6 cores

NVIDIA GTX580 GPU:

512 cores

Control

ALU

ALU

ALU

ALU

ALU ALU

Cache

ALU

10

62×109 870×109 <
Instructions / sec

Core

Cache

http://i.haymarket.net.au/News/NVIDIA_Fermi_GTX480_Die_Shot.jpg

void VecAdd(

int *A, int *B, int *C, int N)

{

 //iterate over N elements

 for(int i = 0; i < N; i++)

 C[i] = A[i] + B[i]

}

VecAdd(A, B, C, N);

__global__ void VecAdd(

int *A, int *B, int *C)

{

 int i = threadIdx.x;

 C[i] = A[i] + B[i]

}

//Launch N threads

VecAdd<<<1, N>>>(A, B, C);

Single Instruction Multiple Threads (SIMT)

11

GPU code CPU code

Example code: vector addition (C = A + B)

1/3지점 8분 10초

Parallelism in SSL Processing

12

Client 1

Client 2

Client N 1. Independent Sessions

SSL Record SSL Record SSL Record 2. Independent SSL Record

3. Parallelism in Cryptographic Operations

SSLShader

Our GPU Implementation

 Choices of cipher-suite

 Optimization of GPU algorithms
• Exploiting massive parallel processing

• Parallelization of algorithms

• Batch processing

• Data copy overhead is significant

• Concurrent copy and execution

13

앞에랑 매핑이 되게-_-
그림을 가져와서 매핑이 되게 하는게 좋을듯

Client Server

Encryption: AES
Message Authentication: SHA1

Key exchange: RSA

Basic RSA Operations

 M: plain-text, C: cipher-text

 (e, n): public key, (d, n): private key

 Encryption:

C = Me mod n

 Decryption:

M = Cd mod n

14

1024/2048 bits integer (300 ~ 600 digits)

Small number: 3, 17, 65537

Decryption at the server side is the bottleneck

Exponentiation  many multiplications

Server-side

Server

Client

Breakdown of Large Integer Multiplication

15

Schoolbook
multiplication

649
X 627

63
280
4200
180
800

12000
5400
32000

+ 360000

406923

Accumulation is difficult to parallelize due to

 “overlapping digits”

“carry propagation”

3 x 3 = 9 multiplications
9 addition of 6-digits integers

O(s) Parallel Multiplications

16

Example of
649 x 627 = 406,923

2s steps

1 or 2 steps
(s – 1 worst case)

s = # of words in a large integer
(E.g., 1024-bits = 16 x 64 bits word)

More Optimizations on RSA

 Common optimizations for RSA
• Chinese Remainder Theorem (CRT)
• Montgomery Multiplication
• Constant Length Non-zero Window (CLNW)

 Parallelization of serial algorithms
• Faster Calculation of M×n
• Interleaving of T + M×n
• Mixed-Radix Conversion Offloading

 GPU specific optimizations
• Warp Utilization
• Loop Unrolling
• Elimination of Divergence
• Avoiding Bank Conflicts
• Instruction-Level Optimization

17

4054 6620 13281 9891 10146 6627 21041

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Throughput (operations/s)

Initial (1)

(2)

(3) Warp

Utilization

(4)

(5) (6) 64-bit words
(7) Avoiding bank

conflicts

(8) Instruction-level

Optimization CLNW (9) Post-exponentiation offloading

Read our paper for details 

Parallelism in SSL Processing

18

Client 1

Client 2

Client N 1. Independent Sessions

SSL Record SSL Record SSL Record 2. Independent SSL Record

3. Parallelism in Cryptographic Operations

SSLShader

Batch Processing

GTX580 Throughput w/o Batching

19

0.08x 0.02x

1.57x

0.02x
0.0x

0.5x

1.0x

1.5x

2.0x

RSA AES-ENC AES-DEC SHA1

Throughput relative to a “single CPU core”

Intel Nehalem single core (2.66Ghz)

22.1x

6.8x 7.7x
9.4x

0x

5x

10x

15x

20x

25x

RSA AES-ENC AES-DEC SHA1

Throughput relative to a "single CPU core"

GTX580 Throughput w/ Batching

20

Difference: ratio of computation to copy

Batch size: 32~4096 depending on the algorithm

Copy Overhead in GPU Cryptography

 GPU processing works by

• Data copy: CPU  GPU

• Execution in GPU

• Data copy: GPU -> CPU

21

AES-ENC
(Gbps)

AES-DEC
(Gbps)

HMAC-SHA1
(Gbps)

GTX580 w/ copy 8.8 10 31

GTX580 no copy 21.8 33 124

0

20

40

60

80

100

120

140

AES-ENC AES-DEC HMAC-SHA1

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

↑2.4x
↑3.3x

↑4x

w/o copy

w/ copy

w/o copy

Hiding Copy Overhead

22

Synchronous Execution

Pipelining

Processing time : 3t

t

Amortized processing time : t

…

…

…

Data copy: CPU -> GPU

Execution in GPU

Data copy: GPU -> CPU

Data copy: CPU -> GPU

Execution in GPU

Data copy: GPU -> CPU

0x

5x

10x

15x

20x

AES-ENC AES-DEC SHA1

Throughput relative to a single core

GTX580 Performance w/ Pipelining

23

↑ 36%
↑ 36%

↑ 51% w/o copy

synchronous

pipelining

9x 9x

14x

Summary of GPU Cryptography

 Performance gain from GTX580

• GPU performs as fast as 9 ~ 28 CPU cores

• Superior to high-end hardware accelerators

 Lessons
• Batch processing is essential to fully utilize a GPU

• AES and SHA1 are bottlenecked by data copy
• PCIe 3.0

• Integrated GPU and CPU

24

RSA-1024
(ops/sec)

AES-ENC
(Gbps)

AES-DEC
(Gbps)

SHA1
(Gbps)

GTX580 91.9K 11.5 12.5 47.1

CPU core 3.3K 1.3 1.3 3.3

16분 30초

BUILDING SSL-PROXY THAT

LEVERAGES GPU

25

SSLShader Design Goals

 Use existing application without modification

• SSL reverse proxy

 Effectively leverage GPU

• Batching cryptographic operations

• Load balancing between CPU and GPU

 Scale performance with architecture evolution

• Multi-core CPUs

• Multiple NUMA nodes

26

Batching Crypto Operations

 Network workloads vary over time
• Waiting for fixed batch size doesn’t work

27

Output
queue

GPU

Input
queue

CPU

GPU

SSL
Stack

 Batch size is dynamically adjusted to queue length

Balancing Load Between CPU and GPU

 For small batch, CPU is faster than GPU
• Opportunistic offloading

28

Output
queue

GPU

Input
queue

CPU processing

GPU processing
when input queue length > threshold

GPU
queue

CPU

Cryptographic operation Minimum Maximum

RSA (1024-bit) 16 512

AES Decryption 32 2048

AES Encryption 128 2048

HMAC-SHA1 128 2048

Input queue length > threshold

Scaling with Multiple Cores

29

 Per-core worker threads
• Network I/O, cryptographic operation

 Sharing a GPU with multiple cores
• More parallelism with larger batch size

Output
queues

GPU

CPU

CPU

CPU

Input
queues GPU

queue
CPU

GPU

Core0

Core1

Core2

Scaling with NUMA systems

 A process = worker threads + a GPU thread

• Separate process per NUMA node

• Minimizes data sharing across NUMA nodes

30

CPU0

IOH0

GPU0

RAM

NIC0

CPU1

IOH1

GPU1

RAM

NIC1

Node 0 Node 1

Evaluation

 Experimental configurations

31

Model Spec Qty

CPU Intel X5650 2.66Ghz x 6 croes 2

GPU NVIDIA GTX580 1.5Ghz x 512 cores 2

NIC Intel X520-DA2 10GbE x 2 2

SSLShader+
Lighttpd

8 Clients

4x 10GbE

…

Server Server

Lighttpd

SSLShader

Lighttpd

OpenSSL

HTTP

Clients

GPU

Clients

HTTPS HTTPS

Server
Specification

Evaluation Metrics

 HTTPS connection handling performance

• Use small content size

• Stress on RSA computation

 Latency distribution at different loads

• Test opportunistic offloading

 Data transfer rate at various content size

32

HTTPS Connection Rate

33

29K

21K

11K

3.6K
0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

1024 bits 2048 bits

SSLShader

lighttpd

2.5x

6x

RSA Key Size

Connections / sec

CPU Usage Breakdown (RSA 1024)

34

Kernel NIC
device driver,

2.32

SSLShader, 5.31

Libc , 9.88

IPP +
libcrypto,

12.89

lighttpd, 4.9

others,
4.35

Kernel
(Including

TCP/IP stack),
 60.35

Current Bottleneck

Latency at Light Load

35

0
10
20
30
40
50
60
70
80
90

100

1 10 100 1000

C
D

F
 (

%
)

Latency (ms)

Similar latency at light load

Lighttpd at 1k
connections / sec

SSLShader at 1k
connections / sec

Latency at Heavy Load

36

Lower latency and higher throughput at heavy load

0

20

40

60

80

100

1 10 100 1000

C
D

F
 (

%
)

Latency (ms)

Lighttpd at 11k
connections / sec

SSLShader at 29k
connections / sec

Data Transfer Performance

37

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

4KB 16KB 64KB 256KB 1MB 4MB 16MB 64MB

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

Content Size

2.1x

0.87x

Lighttpd performance

Typical web content size is under 100KB

SSLShader: 13 Gbps

CONCLUSIONS

38

Summary

 Cryptographic algorithms in GPU

• Fast RSA, AES, and SHA1

• Superior to high-end hardware accelerators

 SSLShader

• Transparent integration

• Effective utilization of GPU for SSL processing

• Up to 6x connections / sec

• 13 Gbps throughput

39

Linux network stack performance

Copy overhead

QUESTIONS?

THANK YOU!

For more details

https://shader.kaist.edu/sslshader

40

http://shader.kaist.edu/sslshader

