SSLShader: Gheap SSL Acceleration with
Commodity Processors

Keon Jang*, Sangjin Han*, Seungyeop Han,
Sue Moon*, and KyoungSoo Park*

KAIST+ and University of Washington®

Security of Paper Submission Websites
oL

htpifhotcrpc.. O ~ & G X § @i Sign in - NDSS 2011 X
NDSS 2011 Signin ~

Sunday 27 Mar 2011 9:46:58pm EDT
Your local time: Monday 28 Mar 2011 11:52:03am

L

i 158 2921132 143.248.133.49 128214263 HTTP POST /ndss1l/index.php

mn Control Protocol, Src Port: 54653 (54653), Dst Pnl

foobar@an kaist.ac kr papers

were
Password acceptec
L LA R R AR R R TR N] Dut

nf -
| b

Security Threats Iin the Internet

= Public WiFi without encryption
» Easy target that requires almost no effort

= Deep packet inspection by governments
» Used for censorship
» In the name of national security

= NebuAd’s targeted advertisement
* Modify user’s Web traffic in the middle

Secure Sockets Layer (SSL)

= A de-facto standard for secure communication
» Authentication, Confidentiality, Content integrity

Client Server
TCP handshake

Key exchange using
public key algorithm

Server (e.g., RSA)
identification

Encrypted data

SSL Deployment Status

= Most of Web-sites are not SSL-protected

» Less than 0.5%
« [NETCRAFT Survey Jan ‘09]

= Why is SSL not ubiquitous?
o Small sites: lack of recognition, manageability, etc.

e Large sites: cost
« SSL requires lots of computation power

SSL Computation Overhead

= Performance overhead (HTTPS vs. HTTP)
» Connection setup 22X

e Data transfer 5OX

= Good privacy is expensive

* More servers
» H/W SSL accelerators

= Our suggestion:
» Offload SSL computation to GPU

SSLShader

= SSl-accelerator leveraging GPU

= SSL reverse proxy
» No madification on existing servers

(818

€

» High-performance
» Cost-effective

<€

>

€

S
S

>

>

SSLShader

SSL-encrypted session

€ > Web Server

€ > SMTP Server

€ 2 POP3 Server
Plain TCP

Our Contributions

= GPU cryptography optimization
» The fastest RSA on GPU
» Superior to high-end hardware accelerators
* Low latency

= SSLShader

» Complete system exploiting GPU for SSL processing
 Batch processing
* Pipelining
« Opportunistic offloading
 Scaling with multiple cores and NUMA nodes

CRYPTOGRAPHIC PROGESSING
WITH GPU

How GPU Differs From CPU?

ALU | ALU —
Control @ ALU ALU J
ALU @ ALU (-
- ALU
Cache - | |
— |
— |
Intel Xeon 5650 CPU: NVIDIA GTX580 GPU:
6 cores 512 cores

Instructions / sec

62x10° < 870x109

http://i.haymarket.net.au/News/NVIDIA_Fermi_GTX480_Die_Shot.jpg

Single Instruction Multiple Threads (SIMT)

Example code: vector addition (C = A + B)

CPU code GPU code

void VecAdd(__global void VecAdd(
int *A, int *B, int *C, int N) int *A, int *B, int *C)
{ {

//iterate over N elements int i = threadlIdx.x;
for(int i = 0; i < N; i++) &> C[i] = A[i] + BI[i]
C[i] = A[i] + BI[i] }
}

//Launch N threads
VecAdd (A, B, C, N); VecAdd<<<1,®>>(A, B, C);

11

Parallelism in SSL Processing

Client 1 +~——&—
Client 2 = @ >

SSLShader

1. Independent Sessions | client N '« @ <

S~

2. Independent SSL Record SSL Record || SSL Record || SSL Record

\

3. Parallelism in Cryptographic Operations

12

Our GPU Implementation

= Choices of cipher-suite

Client Server

Key exchange: RSA

Encryption: AES
Message Authentication: SHA1

= Optimization of GPU algorithms

» Exploiting massive parallel processing
« Parallelization of algorithms
 Batch processing

» Data copy overhead is significant
« Concurrent copy and execution

Basic RSA Operations

M: plain-text, C: cipher-text
(e, n): public key, (d, n): private key

Encryption: Small number: 3, 17, 65537

—>(Client C = odn

1024/2048 bits integer (300 ~ 600 digits)

Decryption:
> Server M = mod n

Exponentiation > many multiplications

Breakdown of Large Integer Multiplication

Schoolbook
multiplication
649 Accumulation is difficult to parallelize due to
X 627 _ o
--------- “overlapping digits”
63 7
280 “carry propagation”
4200 ry propag
180

[3 x 3 =9 multiplications
1?288 O addition of 6-digits integers

406923

O(s) Parallel Multiplications

s = # of words in a large integer

(E.g., 1024-bits = 16 x 64 bits word)

Example of
649 x 627 = 406,923

Phase 1: Intermediate results Accumulated carries
parallel accumulation
0:0:0:0:0:0 0:0:0:0:0:0
6 4 9 = m -
712i84i3 »0:0:0:2:i8:3 -»0:0:0:0:0:0
>lHrigigy = -
|—> 0i0i2:0:6:3 -»0i0:i1:1:050
616344 = = -
lowordofayby L fgigigiaicis|---»loioititioio
- -
6 4 9
 —>0i6i0i6i2:3 »0ilili2i0i0
7148216 = = = =
211:0:41 »0i7i0i7i2i3 »0ilili2i0i0
cl3i,15 = = = =
hiwordofai-b]-_L’ - 5_7 2i3 MOfLit;2i040
] = =
Phase 2: deferred 3i0i6i9i2:3 - 1i0i0i0i0:0
carry processing - m
4i0i6i9i2i3 HO0i0i0i0i0i0

= 25 steps

= 1 or 2 steps

(s — 1 worst case)

More Optimizations on RSA

Initial
4054

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000

Throughput (operations/s)

= Common optimizations for RSA
e Chinese Remainder Theorem (CRT)

a Montacrmaorm: Muldbinlicatioan

Read our paper for details ©

INUAUJLGT CUTGuUuivauiviIl Vi 11

o Interleaving of T + Mxn

» Mixed-Radix Conversion Offloading
= GPU specific optimizations

» Warp Utilization
Loop Unrolling
Elimination of Divergence
Avoiding Bank Conflicts
Instruction-Level Optimization

Parallelism in SSL Processing

1. Independent Sessions

Batch Processing /

2. Independent SSL Record

Client1 = @ >
C“er?tz) @ ’ SSLShader
Client N = @ ~

SSL Record

SSL Record | | SSL Record

3. Parallelism in Cryptographic Operations

\

GTX580 Throughput w/o Batching

Throughput relative to a “single CPU core”

2.0x
1.57X
1.5X
Intel Nehalem single core (2.66Ghz)
1.0x
0.5X
0.08x 0.02x 0.02x
0.0x |— —

RSA AES-ENC AES-DEC SHAl

19

25X
20X
15X
10x
5X
0)%

GTX580 Throughput w/ Batching

Batch size: 32~4096 depending on the algorithm
Throughput relative to a "'single CPU core™'

22.1x \

Difference: ratio of computation to copy

\

! 0.4x
6.8X r.1X

RSA AES-ENC AES-DEC SHAI1

20

Copy Overhead in GPU Cryptography

= GPU processing works by
» Data copy: CPU - GPU
e Execution in GPU
e Data copy: GPU -> CPU

140

S 120 | M W/ copy

% 100 | @ w/o copy

2 80

-

> 60

3 13.3x
g 40 12.4x

|_

SRp— pa—

AES-ENC AES-DEC HMAC-SHA1

21

Hiding Copy Overhead

Synchronous Execution

Data copy: CPU -> GPU
Execution in GPU
Data copy: GPU -> CPU

Pipelining

Data copy: CPU -> GPU
Execution in GPU
Data copy: GPU -> CPU

t
|

| \

Processing time : 3t

1N

I

Amortized processing time : 1

GTX580 Performance w/ Pipelining

20X

Throughput relative to a single core

15x

Wl synchronous
W pipelining

7 51%

T 36%

10X

5X -

Ox -

AES-ENC

AES-DEC SHA1

23

Summary of GPU Cryptography

= Performance gain from GTX580

» GPU performs as fast as 9 ~ 28 CPU cores
» Superior to high-end hardware accelerators

RSA-1024 AES-ENC AES-DEC SHA1
(ops/sec) (Gbps) (Gbps) (Gbps)

GTX580 91.9K 11.5 12.5 47.1
CPU core 3.3K 1.3 1.3 3.3
= Lessons

» Batch processing is essential to fully utilize a GPU

o AES and SHA1 are bottlenecked by data copy
« PCle 3.0
« Integrated GPU and CPU

24

BUILDING SSL-PROKY THAT
LEVERAGES GPU

SSLShader Design Goals

= Use existing application without modification
» SSL reverse proxy

= Effectively leverage GPU
» Batching cryptographic operations
» Load balancing between CPU and GPU

= Scale performance with architecture evolution
» Multi-core CPUs
e Multiple NUMA nodes

Batching Crypto Operations

= Network workloads vary over time
» Waiting for fixed batch size doesn’t work

SsthLk T [~ > [—
ac Input Output
queue queue
= CPU
iy —+ GPU

= Batch size is dynamically adjusted to queue length

Balancing Load Between CPU and GPU

= For small batch, CPU is faster than GPU
» Opportunistic offloading

| | | [== CPU o []|
Input Output
queue queue
GPU
queue
+ | | | [— GPU ~

— " CPU processing
= GPU processing

when input queue length > threshold

Scaling with Multiple Cores

Output
queues

CoreQ0 == [[| | v » CPU
Corel ===> [[| | == » CPU
Core2 == | | | | == » CPU
--------- Input
queues GPU
gueue
—CPU LT[= GPU
- GPU

= Per-core worker threads

» Network I/0O, cryptographic operation

= Sharing a GPU with multiple cores
» More parallelism with larger batch size

29

Scaling with NUMA systems

o .,

..
o .,

RAM CPUQ -+~ CPU1 RAM
' ?
NICO K IOHO ** IOH1 NIC1
! !
Node O GPUO GPU1 Node 1 .

0
.
..

. o
..

= A process = worker threads + a GPU thread
» Separate process per NUMA node
» Minimizes data sharing across NUMA nodes

Evaluation

= Experimental configurations

Server lighttpd Server
Lighttpd
gntp $ HTTP
OpenSSL SSLShader
AAA
1 l l l HTTPS HTTPS
Clients Clients
-IIEE_E_
Server CPU Intel X5650 2.66Ghz x 6 croes

Specification GPU NVIDIA GTX580 1.5Ghz x 512 cores 2
NIC Intel X520-DA2 10GbE x 2 2

Evaluation Metrics

= HTTPS connection handling performance
» Use small content size
e Stress on RSA computation

= |Latency distribution at different loads
» Test opportunistic offloading

= Data transfer rate at various content size

HTTPS Connection Rate

Connections / sec
35,000

W SSLShader
M lighttpd

30,000

25,000 -

20,000 -

15,000 -

10,000 -

5,000 -

O 7 |
1024 bits 2048 bits

RSA Key Size
33

CPU Usage Breakdown (RSA 1024)

others, Kernel NIC
4.35 _device driver,
2.32

lighttpd, 4.9
Current Bottleneck

IPP +
libcrypto,
12.89

Libc , 9.88 Kernel
(Including
TCP/IP stack

SSLShader, 5.31 60.35

Latency at Light Load

100 -

\ Lighttpd at 1k

connections / sec

CDF (%)
o1
o

SSLShader at 1k

connections / sec

10 100 1000
Latency (ms)

Similar latency at light load

35

100

CDF (%)
nN
o

@0)
o

(@)
o

N
o

()

Latency at Heavy Load

SSLShader at 29k
connections / sec

"~ Lighttpd at 11k
connections / sec

100 1000
Latency (ms)

Lower latency and higher throughput at heavy load

36

Data Transfer Performance

2.1

SSLShader: 13 Gbps
I

Lighttpd performance

0.87x

AKB 16KB 64KB 256KB 1MB
Content Size

AMB 16MB 64MB

Typical web content size is under 100KB

37

CONCLUSIONS

Summary

= Cryptographic algorithms in GPU
e Fast RSA, AES, and SHA1
» Superior to high-end hardware accelerators

= SSLShader

 Transparent integration

o Effective utilization of GPU for SSL processing

« Up to 6x connections / sec

« 13 Gbps throughput _ \
Linux network stack performance

Copy overhead

https://shader.kaist.edu/sslshader

QUESTIONS?
THANK YOU!

http://shader.kaist.edu/sslshader

