
Orna Agmon ladypine@vipe.technion.ac.il

Portable Programming

Orna Agmon

ladypine@vipe.technion.ac.il

Haifux 26.5.2003

May 30, 2003 Portable Programming Slide 1

Orna Agmon ladypine@vipe.technion.ac.il

TOC

• Essence of Portability

• Levels of Portability

• Portable Programming (mainly C)

• Cross Unix issues

• Files

• Shell scripts

May 30, 2003 Portable Programming Slide 2

Orna Agmon ladypine@vipe.technion.ac.il

I built it for Linux, I want people to use Linux to use my application.

After all, Linux is the best platform!

May 30, 2003 Portable Programming Slide 3

Orna Agmon ladypine@vipe.technion.ac.il

Why Should I Write Portable (Cross-Platform)

Code

• Be able to compile and test on various platforms.

• Latent bugs may be more obvious on other platforms. Cross

platform testing improves the code quality.

• Make use of platform-specific tools, such as valgrind (on Linux)

or third (on OSF1)

• Be able to use whatever machine falls into your hands for the

purpose of running your code.

• Be able to use multi-architechtural PVM.

May 30, 2003 Portable Programming Slide 4

Orna Agmon ladypine@vipe.technion.ac.il

Essence of Portability

Using standards :

• Verifying (by documentation) the standard behavior of tools

before using them. i.e., what the tools are supposed to do, and

not what they usually do.

• Relying only on standard behavior of functions and tools.

Avoiding possibly cool system-special features.

• Using standards in a level which is as low as possible. (e.g., in

cross-platform source rather than a widely portable compiler or

linker)

• Wrapping tools in order to guaranty at least that they do not

crash when accepting an undesired syntax.

May 30, 2003 Portable Programming Slide 5

Orna Agmon ladypine@vipe.technion.ac.il

Essence of Portability

Using portable tools (languages, compilers, OSes) and features:

• Widely available

• Free software

Actually laying hands: on other systems, compilers, OSes, shells,

architectures, and building and running on them.

Documenting in free and open formats (pdf, ps...).

May 30, 2003 Portable Programming Slide 6

Orna Agmon ladypine@vipe.technion.ac.il

Level of Required/ Desired Portability

• Many unknown systems or just two known ones? What are

expected future developments?

• Is the software required to work on other platforms, or also have

its look’n’feel?

• How system-specific is the code?

The scope of this lecture will be user space programs, and where to

expect systems to vary. Some hints may even be given as to how to

solve these issues.

May 30, 2003 Portable Programming Slide 7

Orna Agmon ladypine@vipe.technion.ac.il

Unix- Windows Solutions

• Emulationof UNIX environment: cygwin , Packages of Gnu tools

for Windows.

• Emulation of Windows environment: wine

• Scripting: perl, python, tcl/tk

• Common user interface libraries

• Specific code (depending on the type of machine, discovered by

configure)

May 30, 2003 Portable Programming Slide 8

Orna Agmon ladypine@vipe.technion.ac.il

C standards

• ISO C (ANSI C) since 1989. Widely supported, hence preferred

standard.

• K&R (the first book on C by Kernighan and Ritchie) C. Old

Standard.

• C9X. Not widely supported by compilers.

May 30, 2003 Portable Programming Slide 9

Orna Agmon ladypine@vipe.technion.ac.il

C standards

• gcc is highly portable itself, but some extensions are not. In gcc,

the “-pedantic” option will warn about the use of gcc extensions.

• macros from <features.h> will enforce usage of chosen standards

in the source level instead of compiler level.

• Example: for (int i=0; i < 10; ++i){}. i may be declared

just within the loop (gcc, compiled as c), stay declared after the

loop (Visual C, compiled as cpp), or the syntax may not compile

at all (cc of OSF1, compiled as c).

May 30, 2003 Portable Programming Slide 10

Orna Agmon ladypine@vipe.technion.ac.il

”The good things about standards is that there are so many different

ones to choose from.”

—Patty Seybold, 1988.

May 30, 2003 Portable Programming Slide 11

Orna Agmon ladypine@vipe.technion.ac.il

Data Types

• Some C types specify minimal sizes only: int is at least 16 bit,

long is at least 32 bit. short is exactly 16 bit, char is exactly 8.

• Exact data types are defined in C99 in <stdint.h>. On

openBSD, for example, the same types may be defined in

<sys/types.h>. Solaris: <sys/int types.h>. The purpose of

autoheader is to solve these issues.

• <limits.h> supplies, well, limits! (maximal values that data

types can hold)

• Many Fortran compilers have parameters to define the sizes of

variables, such as “ -i4 -r8”. Those parameters enforce

consistency within a program.

May 30, 2003 Portable Programming Slide 12

Orna Agmon ladypine@vipe.technion.ac.il

Data Types still...

• Usage of special types will ensure consistency with system

libraries: size t for sizes, time t for the return value of the time

function. Here, again, there may be differences regarding location

of definitions, and autoheader comes to assist.

• Consistency within the software can be achieved by using

typedefs, defined in one header for the whole package. Those

types must be consistent for each system, though they may vary

between systems.

• Bit operations are dangerous regarding varying data sizes.

May 30, 2003 Portable Programming Slide 13

Orna Agmon ladypine@vipe.technion.ac.il

Casting pointers to Data Types

Casting pointers is dangerous. Period.

• For example, the space of one 8-byte real will accommodate four

2-byte int values on some system, and two 4-byte int values on

others) .

• Casting to larger data types, for example (int *) to (float *), may

lead to illegal addresses.

• It is not even necessary for sizeof(int)*2=sizeof(double).

May 30, 2003 Portable Programming Slide 14

Orna Agmon ladypine@vipe.technion.ac.il

Other Stuff

• Usage of static memory (relevant to FORTRAN)

• Linking languages: the name of the compiled function varies.

Some compilers may add another in the end of subroutines

which have within their name. Example: when the FORTRAN

subroutine uses myfunc and my func (both in C), the linker will

look for a C subroutines called myfunc and my func .

• Stack size

• memory size.

May 30, 2003 Portable Programming Slide 15

Orna Agmon ladypine@vipe.technion.ac.il

Endianness

Endianness is architecture dependent.

• Little-endian: the least significant byte is at the lowest address

in memory. Examples: Intel, Alpha.

• Big-endian: the most significant byte is at the lowest address in

memory. Examples: MIPS, Sparc.

Relevant when storing binary data or communicating it.

May 30, 2003 Portable Programming Slide 16

Orna Agmon ladypine@vipe.technion.ac.il

Endianness- Solutions

• Avoid storing binary data: store ASCII. Free bonus- easily read

by a human.

• Communicate using wrappers: PVM

• Another reason to avoid casting of pointers. Avoid endianness

“games”: For example, do not do in C:

int i = 4;

char c = *(char *) i;

Do not do in FORTRAN an equivalence between character and

integer.

• Use conversion functions between “Network Endianness” (big

endianness, used in TCP/IP protocols) and “Host endianness”-

(htons, ntohs, htonl, ntohl). The functions depend on the lengths

of int and long.

May 30, 2003 Portable Programming Slide 17

Orna Agmon ladypine@vipe.technion.ac.il

C Structure Layout

Compiler dependent. In FORTRAN- common layout.

• Variables are always in the same order.

• However, there may be gaps (“padding”) between variables.

• Padding may be controlled by a compiler parameter.

• Avoid writing or sending complete structs over networks: send

them field-wise

• If you wish to compare structs, make sure to have initialized

sizeof(mystruct) using memset, and only then you can compare

them using memcmp.

May 30, 2003 Portable Programming Slide 18

Orna Agmon ladypine@vipe.technion.ac.il

C Floating point

• Existing standard: IEEE-695

• Most processors use 64 bits precision for temporary fp

operations. Intel x86 and most of Motorola 68k use 80 bits.

• Optimization ⇒ fused sequences of multiplication and addition

in high precision. On heavy floating point programs this may

cause a change in the flow of the program.

May 30, 2003 Portable Programming Slide 19

Orna Agmon ladypine@vipe.technion.ac.il

C Floating point- Solutions

• Most compilers have an option to disable the extended precision

(for example ‘-ffloat-store’ in gcc).

• Floating point programming should use epsilon values where

required. For example, check for (fabs(x)>1.0e-15) rather than

(x!=0), do not accumulate small numbers to a large accumulator.

• Check your software for FPEs (using compiler flags), but do not

count on the compiler to always supply those mechanisms,

requires by IEEE-695 standards (overflow, underflow, etc.)

May 30, 2003 Portable Programming Slide 20

Orna Agmon ladypine@vipe.technion.ac.il

Unix standards

Modern Unices comply with:

• POSIX.1 (1990 edition)

• POSIX.2 (1992 edition)

• SuS (The Single UNIX Specification, Version 3)

Functions missing in POSIX.1 may not be always available. (getuid,

snprintf, mmap). Look for alternatives. Use autoconf. Check for

existence using AC CHECK FUNCS in configure.in.

May 30, 2003 Portable Programming Slide 21

Orna Agmon ladypine@vipe.technion.ac.il

Time and Date

• The zero date changes (not always 0:00:00, January 1, 1970). Use

ISO 8601 standard: YYYY-MM-DD.

• The type time t, which time returns, changes.

• gettimeofday is not POSIX

May 30, 2003 Portable Programming Slide 22

Orna Agmon ladypine@vipe.technion.ac.il

Character sets

• Order of characters changes (ABC..abc, AaBbCc..., European

vowels interlaced), even within the first 128 values.

• Not to mention existance of Hebrew charsets...

• Usages of ord(), chr() is not portable.

• isalpha from <ctype.h> will test for characters being of class

alpha, given the locale.

May 30, 2003 Portable Programming Slide 23

Orna Agmon ladypine@vipe.technion.ac.il

making and configuring

• Avoid obsolete, not fully supported make syntax: for example,

avoid double suffix targets like .c.o:. Use %.o : %.c instead.

• Avoid specific make extentions to syntax, for example gmake

extentions.

• Identify system functionality, instead of deducing from

system names, thus supporting future systems.

• Insert compiler parameters to configure.in, not to makefile.in .

May 30, 2003 Portable Programming Slide 24

Orna Agmon ladypine@vipe.technion.ac.il

Files

Not all operating systems have:

• Case sensitivity in file names.

• Directory separators (/ on Unix, : on Mac OS, \ on Windows,

DOS).

• Spaces in file names (allowed (escaped)on Unix, but not

customary– bugs are likely to appear when running on Windows).

• “:” in filenames is not allowed on Windows.

• Delimiter for lists of directories (Unix :, Windows ;) .

• Concept of a single root directory (/mnt/my windows machine

vs. \\my UNIX machine\my disk.

May 30, 2003 Portable Programming Slide 25

Orna Agmon ladypine@vipe.technion.ac.il

Files

Not all operating systems have:

• Support of renaming or unlinking open files ⇒ Close files before

doing suspicious things to them.

• Per program/process environment variables.

• Per program/process current directory.

May 30, 2003 Portable Programming Slide 26

Orna Agmon ladypine@vipe.technion.ac.il

Binary files vs. Text Files

or

The case of the infamousˆM

In Windows, text lines end with carriage return character followed by

a line feed (\r\n).

• C programs which read a Windows text files will read two

characters in binary mode (fopen with parameter ’b’), one in text

mode.

• A C program which opens a text file cannot simply count

characters and use the info for fseek.

• Ftp also needs to know the type of file.

• d2u, u2d (a.k.a. dos2unix, unix2dos) convert formats.

May 30, 2003 Portable Programming Slide 27

Orna Agmon ladypine@vipe.technion.ac.il

Shell Scripts

Shells themselves were ported to the machine already. Using the local

shell might solve some porting issues. For example, using shell tools

through embedding system(“my shell command”); within a C

code. There are even shells for Windows.

• “#! /bin/sh “ is the default shell on the system.

• The default shell usually resembles Bourne Shell.

• Usage of standard Bourne shell is usually implemented in all

versions. (For example: ‘”PATH= ”/my/path”: $PATH ”

does not always work, do use export.)

• Sometimes there exists another shell with capabilities the default

one lacks (for example, functions).

May 30, 2003 Portable Programming Slide 28

Orna Agmon ladypine@vipe.technion.ac.il

Command line tools

• Location of command line tools: specifying the location saves

time and verifies the correct tool is used. On the other hand,

when the location is not the same on relevant systems, not

specifying the location may solve the problem.

• Verify and match : tool –version with man tool and info tool.

locate tool to find other versions.

May 30, 2003 Portable Programming Slide 29

Orna Agmon ladypine@vipe.technion.ac.il

Perl Scripts

• Perl is a portable way for doing shell scripts.

• Perl is not always installed in the same place (/usr/bin,

/usr/local/bin): use “#!/usr/bin/env perl” (env usually is

located in the same place)

May 30, 2003 Portable Programming Slide 30

Orna Agmon ladypine@vipe.technion.ac.il

Readings

• The Autobook: http://sources.redhat.com/autobook/ by Gary

V. Vaughan, Ben Elliston, Tom Tromey and Ian Lance Taylor

• Perlport: Writing Portable Perl

http://www.perl.com/language/newdocs/pod/perlport.html

• Motivation for writing portable code

http://www.byteswap.net/mikesnotes/2002/getting-started/

• Porting Guides

http://www.unixporting.com/porting-guides.html

May 30, 2003 Portable Programming Slide 31

Orna Agmon ladypine@vipe.technion.ac.il

References

• PVM http://www.epm.ornl.gov/pvm/pvm home.html

• tcl/tk http://www.scriptics.com/

• cygwin http://sourceware.cygnus.com/cygwin/

• pdf http://www.adobe.com/products/acrobat/adobepdf.html

• Gnu Tools for Windows: http://www.mingw.org/

http://www.delorie.com/djgpp/

• Using attribute in gcc and other C compilers

http://www.unixwiz.net/techtips/gnu-c-attributes.html

• http://www.unix-systems.org/version3/

May 30, 2003 Portable Programming Slide 32

